Enterprise Console

Related pages:

- Install the Enterprise Console
- Administer the Enterprise Console

The Enterprise Console is the installer for the Controller and Events Service. You can use it to install and manage the entire lifecycle of new or existing on-premises AppDynamics Platforms and components. The application provides a GUI and command-line interface.

There is no customer-facing application for SaaS Controllers since they are managed by the AppDynamics Operations team.

If your Enterprise Console host goes down, it does not impact Controllers, Events Service, or High Availability (HA) pairs. Those services will continue to run independently of the application. You can then discover all platforms on a new Enterprise Console host without any impact on the components.

If the Enterprise Console is not available, the auto-failover option for HA pairs will also not be available when there is an issue with the primary Controller. Therefore, it is important to keep the Enterprise Console host in a healthy state.

Enterprise Console Details

The Enterprise Console encompasses management features, installation modes, and lifecycle monitoring.

Enterprise Console Features

The Enterprise Console allows you to perform the following tasks:

Multi-Platform Management

- Manage multiple platforms at the same time using the application

 The Enterprise Console does not require all services within a given platform to have the same major version number.

- Discover, install, and upgrade Controllers, Event Services, and MySQL nodes

 Note that all services on Windows machines must be installed on the Enterprise Console host when using the Enterprise Console since the application does not support remote operations on Windows.

HA-Lifecycle Management (Available on Linux only)

- Manage HA pair lifecycle without the use of the CLI based HA-toolkit or sudo privileges
- Perform failover management

Other Features

- Manage Controller and Events Service lifecycle
- Utilize GUI & CLI support
- Manage AppServer and database configurations

Platform Install Modes

There are two install types that you can use to deploy your platform:

Express Install

- The quickest way to get started for fresh Controller installations
- Install the Controller and an embedded Events Service on a single host

Custom Install

- Configure and customize user inputs and installation/data directories for the Controller and Events Service
- Install or upgrade single or HA Controllers and scaled-up Events Service in a distributed setup

Controller HA pairs and Events Service clusters are not available on Windows machines through the Enterprise Console since the application does not support remote operations on Windows.

You can manually install or upgrade multi-node Events Service clusters. See Install the Events Service on Windows or Upgrade the Events Service Manually.
- Add one or more Events Service nodes
- Discover & Upgrade older platform services

Lifecycle Monitoring

On the Platforms page, you can see all of your platforms, their statuses, and the statuses of their services. Once you have selected a platform to view, the screen is separated into different tabs:

Hosts

Hosts are the actual hardware devices that are connected to the platform. You can add, remove, or change the credentials of your hosts in this tab.

> You cannot add a host in a Windows Enterprise Console machine.

Controller

The Controllers page shows the primary and secondary roles of the Controllers and their MySQL nodes. The entire lifecycle operations of Controllers and MySQL nodes can be performed here. You can also see the External URL, which is the IP of the primary machine. Health statuses for the Controllers are also available. You can Add a Secondary Controller if you would like to create an HA pair, then initiate an HA failover if you want to trigger a failover. You can also start or stop a Controller, Upgrade a Controller and MySQL, and more.

Events Service

The Events Service page displays your Events Service cluster, which can be made using one to three machines. Again there is an entire lifecycle of operations you can do.

Credentials

Credentials are your host’s usernames and private keys. They are required to SSH or connect to the hosts via system user name and private keys.

Jobs

All of the jobs that you perform on your platform can be seen on the Jobs page. It is a nice way to keep track of your jobs and also see which jobs have failed.

Configurations

Configurations are important since they let you customize your installations. Configuration settings on the Enterprise Console are separated into three categories: Platform, Controller, and Events Service Settings.

The Controller Settings contains the most configurable settings. The AppServer Configurations under Controller Settings allows you to see all of the Domain configurations which you can initiate from this point or configure your ports. The Database Configurations lets you edit your MySQL settings. So you do not have to tweak the machine, you can do everything from the Console itself.

Enterprise Console Platforms Architecture

The following diagram depicts five platform examples that can be deployed and managed by the Enterprise Console.

> You cannot use the Enterprise Console to install the End User Monitoring (EUM) Server. Instead, you must use a package installer that supports interactive GUI or console modes, or a silent response file installation.
Depending on the scale of your deployment, your requirements, and the products you are using, your own application environment is likely to consist of a subset of the components shown in the diagram.

You can find the full On-Premises Deployment Architecture diagram on [AppDynamics Application Performance Monitoring Platform](#), as well as a more detailed On-Premises and SaaS architecture diagram on [PDFs](#).

Enterprise Console Platforms

The following table describes how the components work together in the above platforms.

<table>
<thead>
<tr>
<th>Platform Number</th>
<th>Components Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform 1</td>
<td>Platform 1 depicts a single Controller with a local 4 Events Service and 6 EUM Server. The local Events Service contains an 5 API Store.</td>
</tr>
<tr>
<td>Platform 2</td>
<td>Platform 2 depicts a single Controller with a remote, single host 4 Events Service and 6 EUM Server. The remote Events Service contains an 5 API Store and can be expanded to a cluster by adding two or more machines.</td>
</tr>
<tr>
<td>Platform 3</td>
<td>Platform 3 depicts an HA Controller pair with a remote 4 Events Service cluster and 6 EUM Server. The Events Service cluster contains an 5 API Store on all nodes. The cluster must have three or more nodes.</td>
</tr>
<tr>
<td>Platform 4</td>
<td>Platform 4 depicts a single monitoring Controller. This Controller monitors the HA pair in platform 3 by receiving metrics via connection from the 7 App and Machine Agents. See Manage a High Availability Deployment for more information.</td>
</tr>
<tr>
<td>Platform 5</td>
<td>Platform 5 depicts a single shared Events Service. A shared Events Service can connect to multiple platforms, minimizing required maintenance and cost. See Events Service Deployment for more information.</td>
</tr>
</tbody>
</table>

Enterprise Console Platform Connections

The following table lists and describes the traffic flow between the above components in the platforms.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Source</th>
<th>Destination</th>
<th>Traffic</th>
<th>Protocol</th>
<th>Default Port(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>Controller Health Checks / Controller Management</td>
<td>HTTP</td>
<td>8090</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HTTPS</td>
<td>8181</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>4</td>
<td>Events Service API Store Events Service Health Checks / Events Service Management</td>
<td>HTTP(S)</td>
<td>9080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9081</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>6</td>
<td>EUM Metric Data</td>
<td>HTTP</td>
<td>7001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HTTPS</td>
<td>7002 (demo mode only)</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>4</td>
<td>Events Service API Store Analytics Event Data</td>
<td>HTTP(S)</td>
<td>9080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HTTP(S)</td>
<td>9081</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>4</td>
<td>Events Service API Store EUM Event Data</td>
<td>HTTP(S)</td>
<td>9080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HTTP(S)</td>
<td>9081</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td></td>
<td>Monitoring Metric Data</td>
<td>HTTP</td>
<td>8090</td>
</tr>
</tbody>
</table>
There is no communication from the Controller to the Enterprise Console.