
Page 1

AppDynamics Pro Documentation
Version 3.8.5

AppDynamics for .Net

Page 2

 AppDynamics for .NET . 3
 Supported Environments and Versions for .NET . 3

 Install the App Agent for .NET . 8
 Configure the App Agent for .NET . 10

 App Agent for .NET Directory Structure . 18
 Unattended Installation for .NET . 20
 Upgrade the App Agent for .NET . 25

 Enable SSL for .NET . 29
 Enable the App Agent for .NET for Windows Services . 34

 Enable the App Agent for .NET for Standalone Applications 37
 AppDynamics for Windows Azure with NuGet . 40

 Manually Install the App Agent for .NET on Windows Azure 45
 Register for AppDynamics for Windows Azure . 50

 Uninstall the App Agent for .NET . 54
 Resolve App Agent for .NET Installation and Configuration Issues 55

 Configure AppDynamics for .NET . 67
 Enable Thread Correlation for .NET . 67

 Enable Correlation for .NET Remoting . 68
 Configure Backend Detection for .NET . 71

 WCF Exit Points for .NET . 78
 Message Queue Exit Points for .NET . 80

 Monitor RabbitMQ Backends for .NET . 81
 ADO.NET Exit Points . 84

 Resolve Unknown0 Database Backend Name . 86
 HTTP Exit Points for .NET . 88

 Web Services Exit Points for .NET . 89
 Configure Custom Exit Points for .NET . 91

 Configure Business Transaction Detection for .NET . 96
 POCO Entry Points . 98

 ASP.NET Entry Points . 101
 Import and Export Transaction Detection Configuration for .NET 110

 Identify MVC Transactions by Controller and Action . 115
 Configure Application Domain Monitoring . 117

 Instrument the DefaultDomain for Standalone Applications . 122
 Getter Chains in .NET Configurations . 123

 Enable Monitoring for Windows Performance Counters . 126
 Configure the .NET Machine Agent . 127

 Enable Instrumentation for WCF Data Services . 130
 Monitor .NET Applications . 131

 Monitor CLRs . 132
 Monitor IIS . 134

 Monitor Async Transactions for .NET . 137
 Monitor Oracle Backends for .NET with AppDynamics for Databases 142

 Tutorials for .NET . 145
 Overview Tutorials for .NET . 145
 Administer App Agents for .NET . 146

 Disable Instrumentation for an IIS Application Pool . 147
 Naming Conventions for .NET Nodes . 148

 App Agent for .NET Configuration Properties . 151
 Troubleshoot .NET Application Problems . 165

 Troubleshoot Slow Response Times for .NET . 165

Copyright © AppDynamics 2012-2014 Page 3

AppDynamics for .NET
This information covers using AppDynamics for .NET applications and environments. For general
information see and .AppDynamics Essentials AppDynamics Features

Tutorials

Monitor .NET
Applications

Supported
Environments and
Versions for .NET

Supported
Environments and
Versions for .NET
End User Monitoring
Compatibility (.NET)
All Supported
Environments and
Versions

Configure AppDynamics
for .NET

Administer App Agents for
.NET

Supported Environments and Versions for .NET

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Essentials
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Features
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+-+Web+EUM#SupportedEnvironmentsandVersions-WebEUM-EndUserMonitoring(EUM)Compatibilityin.NETEnvironments
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+-+Web+EUM#SupportedEnvironmentsandVersions-WebEUM-EndUserMonitoring(EUM)Compatibilityin.NETEnvironments
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions

Copyright © AppDynamics 2012-2014 Page 4

Supported Platform Matrix for the App Agent for .NET
Supported Runtime Environments

OS Versions
Microsoft .NET Frameworks
Runtime Environments
Microsoft Windows Azure
Unsupported Frameworks

Automatically Discovered Business Transactions
Supported Loggers for the App Agent for .NET
Remote Service Detection
Supported Windows Azure Remote Services
Data Storage Detection

Supported ADO.NET Clients

Supported Platform Matrix for the App Agent for .NET

Supported Runtime Environments

This section lists the environments where the .NET agent does some automatic discovery after
little or no configuration.

OS Versions

Microsoft* Windows* Server 2003 (32-bit and 64-bit)
Microsoft Windows Server 2008 (32-bit and 64-bit)
Microsoft Windows Server 2008 R2
Microsoft Windows Server 2012

Microsoft .NET Frameworks

Microsoft .NET Framework versions 2.0, 3.0, 3.5, 4.0, 4.5

Runtime Environments

Microsoft IIS versions 6.0, 7.0, 7.5, 8.0
Microsoft SharePoint 2010, 2013 as services running inside IIS
Managed Windows Services
Managed Standalone Applications

Microsoft Windows Azure

Windows Azure Cloud Services (Web Roles and Worker Roles)

Unsupported Frameworks

Microsoft .NET versions 1.0, 1.1
Unmanaged native code
Windows Azure Web Sites

Copyright © AppDynamics 2012-2014 Page 5

Automatically Discovered Business Transactions

The App Agent for .NET discovers business transactions for the following frameworks by default.
The agent enables detection without additional configuration.

Type Custom Configuration
Options

Downstream Correlation

ASP.NET Yes Yes

ASP.NET MVC 2
ASP.NET MVC 3
ASP.NET MVC 4
ASP.NET MVC 5

Yes Yes

.NET Remoting No Requires configuration.
See Enable Correlation for

..NET Remoting

Windows Communication
Foundation (WCF)

No Yes

Web Services including SOAP No Yes

Message Queues

 Apache ActiveMQ NMS
framework and related MQs

No Yes

 IBM WebSphere MQ No Yes

 RabbitMQ Yes Yes

 TIBCO Enterprise Message
Service

No Yes

 TIBCO Rendezvous No Yes

 New in 3.8.4, the App Agent for .NET automatically discovers entry points for ASP.NET web
forms with the Async property set to "true" in the .Page directive

Supported Loggers for the App Agent for .NET

Log4Net
NLog
System Trace
Windows Event Log

If you are using a different logger, see .Custom Logger Definitions

Remote Service Detection

http://msdn.microsoft.com/en-us/library/vstudio/ydy4x04a(v=vs.100).aspx
http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection#ConfigureErrorDetection-CustomLoggerDefinitions

Copyright © AppDynamics 2012-2014 Page 6

The App Agent for .NET automatically detects the following remote service types. The agent
enables detection by default. You don't need to perform extra configuration.

Type Custom
Configuration
Options

Async Detection † Downstream
Correlation

Directory Services,
including LDAP

No No N/A

HTTP Yes Requires
configuration.
See Monitor Async
Transactions for .NET
.

Yes

.NET Remoting Yes No Requires
configuration.
See Enable
Correlation for .NET

.Remoting

WCF Yes Requires
configuration.
See Monitor Async
Transactions for .NET
.

Yes

WCF Data Services Yes No No

Web Services,
inlcuding SOAP

Yes Requires
configuration.
See Monitor Async
Transactions for .NET
.

Yes

Message Queues

 Apache ActiveMQ
NMS framework and
related MQs

Yes No Yes

 IBM WebSphere
MQ (IBM XMS)

Yes No Yes

 Microsoft Message
Queuing (MSMQ)

Yes No N/A

 Microsoft Service
Bus / Windows Azure
Service Bus

No No Yes

Copyright © AppDynamics 2012-2014 Page 7

 TIBCO Enterprise
Message Service

Yes No Yes

 TIBCO Rendezvous Yes No Yes

 Windows Azure
Queue

No No No

† The agent discovers asynchronous transactions for the Microsoft .NET 4.5 framework. See
 for details.Monitor Async Transactions for .NET

Supported Windows Azure Remote Services

Type Configuration
can be customized

Downstream
Correlation

Azure Blob No No

Azure Queue No No

Microsoft Service Bus No Yes

Data Storage Detection

In a .NET environment, AppDynamics Agent for .NET automatically detects the following data
storage types. The agent enables detection by default. You don't need to perform extra
configuration.

Type Configuration Can
Be Customized

AppD for Databases?

ADO.NET (see supported
clients below)

Yes No

Windows Azure Blob Storage No No

Supported ADO.NET Clients

We can monitor any ADO.NET client version and type. Clients we've tested include the following:

Database Name Database Version Client Type

Oracle 10, 11, 12 ODP.NET

Oracle 10, 11, 12 Microsoft Provider for Oracle

MySQL 5.x Connector/Net and ADO.NET

Microsoft SQL Server* 2005, 2008, 2012 ADO.NET

Copyright © AppDynamics 2012-2014 Page 8

* and are registered trademarks of Microsoft Corporation inMicrosoft, SQL Server, Windows
the United States and other countries.

Install the App Agent for .NET

Installing the App Agent for .NET
Installation Prerequisites
Installation Procedure

To install the App Agent for .NET
Agent Configuration

Launch the agent configuration utility
Don't launch the agent configuration utility

Silent Install Options
Learn More

This topic describes how to install the App Agent for .NET. To learn about upgrading the App
Agent for .NET, see .Upgrade the App Agent for .NET

Install the App Agent for .NET once on each system that hosts managed .NET applications: IIS
applications, Windows services, or standalone applications. At start up, the agent initializes an
individual instance of itself for each application running in the CLR.

Installing the App Agent for .NET

Installation Prerequisites

Microsoft Distributed Transaction Coordinator (MSDTC)

COM+
See Verify COM+ Services are enabled.

Installation Procedure

To install the App Agent for .NET

1. Download the App Agent for .NET MSI installer package from the AppDynamics Download
.Zone

2. Run the MSI installer package.

3. Read the and click to accept. Click .End User Agreement Next

4. Optionally change the destination directory for the App Agent for .NET and click .Install

By default, the agent installs to the following directory:

C:\Program Files\AppDynamics\AppDynamics .NET Agent

5. Click on the window to allow the installer to make changes to theYes User Account Control

http://docs.appdynamics.com/display/PRO14S/Resolve+App+Agent+for+.NET+Installation+and+Configuration+Issues#ResolveAppAgentfor.NETInstallationandConfigurationIssues-ToverifyCOM+Servicesareenabled
http://download.appdynamics.com/
http://download.appdynamics.com/

Copyright © AppDynamics 2012-2014 Page 9

computer.

If the current account does not have administrator privileges, the installer prompts you to supply
the password for an administrator account.

6. Wait for the installation to complete.

See to decide whether or not to launch the AppDynamics Agent ConfigurationAgent Configuration
utility.

If you encounter problems installing, see Resolve App Agent for .NET Installation and
.Configuration Issues

Agent Configuration

Use the following guide to decide whether or not to launch the AppDyanmics Agent Configuration
utility:

Launch the agent configuration utility

If this is a and you are instrumenting , see new installation IIS applications Configure the
.App Agent for .NET

If this is a and you are instrumenting , see new installation Windows services Enable the
.App Agent for .NET for Windows Services

If this is a and you are instrumenting , see new installation standalone applications Enabl
.e the App Agent for .NET for Standalone Applications

If this is an and you instrument witupgrade from 3.7.7 or earlier IIS or Windows services
h , see .automatic tier assignment To let AppDynamics automatically name the tiers
If this is an and you instrument witupgrade from 3.7.7 or earlier IIS or Windows services
h and you wish to clean up old configurations, see manual tier assignment To clean up

.legacy configurations

Don't launch the agent configuration utility

If this is an or later.upgrade from 3.7.8
If this is an or earlier and you instrument or withupgrade from 3.7.7 IIS Windows services

 and you don't wish to clean up old configurations at this time.manual tier assignment

Silent Install Options

See .Unattended Installation for .NET

Learn More

Configure the App Agent for .NET
Unattended Installation for .NET
Logical Model
App Agent for .NET Configuration Properties

http://docs.appdynamics.com/display/PRO14S/Configure+the+App+Agent+for+.NET#ConfiguretheAppAgentfor.NET-automaticToletAppDynamicsautomaticallynamethetiers
http://docs.appdynamics.com/display/PRO14S/Upgrade+the+App+Agent+for+.NET#UpgradetheAppAgentfor.NET-Tocleanuplegacyconfigurations
http://docs.appdynamics.com/display/PRO14S/Upgrade+the+App+Agent+for+.NET#UpgradetheAppAgentfor.NET-Tocleanuplegacyconfigurations
http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 10

Resolve App Agent for .NET Installation and Configuration Issues
Disable Instrumentation for an IIS Application Pool
Upgrade the App Agent for .NET
App Agent for .NET Directory Structure

Configure the App Agent for .NET

Configuration Considerations
File System Security Settings

Configuring an App Agent for .NET
To access the .NET Agent Configuration Utility
To set up the logs and account permissions
To provide Controller configuration information
To map business applications, tiers, and nodes to your application environment
To let AppDynamics automatically name the tiers
To manually name the tiers

Using a Configuration File from the Command Line
To create a configuration file
To run the configuration utility from the command line

Learn More

The App Agent for .NET requires information about your .NET applications: IIS applications,
Windows services, or standalone applications. Configure the App Agent for .NET according to
what kind of application you want to monitor:

For IIS applications, use the configuration utility with either automatic or manual tier naming.
See the instructions in this topic.
For Windows services, use the configuration utility, then manually update the config.xml.
See .Enable the App Agent for .NET for Windows Services
For standalone applications, use the configuration utility, then manually update the
config.xml See .Enable the App Agent for .NET for Standalone Applications

Use the App Agent for .NET Configuration Utility to configure the agent just after installation, or to
make changes to existing agent configurations.

Configuration Considerations

AppDynamics recommends that you install the Controller, or have access credentials to a SaaS
Controller, before installing an agent.

Prior to configuration, run the .NET Agent Installer. See .Install the App Agent for .NET

The utility configures one agent at a time.

AppDynamics implements the profile API of the .NET CLR. Since a Windows machine only allows
use of one profiler at a time, you must uninstall any pre-existing profiler, such as Ant, VS 2010
Performance Tools, or others. The utility alerts you if it finds a pre-existing profiler.

 To apply configurations, the .NET Agent Configuration Utility must restart IIS. The utility offers
you the option to restart IIS or not. If you choose not to restart, configurations apply the next time
IIS restarts.

Copyright © AppDynamics 2012-2014 Page 11

File System Security Settings

For the App Agent for .NET to instrument your application correctly, ensure the following Windows
accounts have the required file system access permissions:

The account you use to run your web application as defined by its application pool or the
Windows service account.
The account you use to run the AppDynamics Agent Coordinator, by default the Local
System account.

The required permissions are as follows:

Write permission to the .NET App Agent logs directory:
 For agent version 3.7.8 or later, the default is as follows:
 Windows Server 2008 and later: %ProgramData%\AppDynamics\DotNetAgent\
Logs
 Windows Server 2003: %AllUsersProfile%\Application
Data\AppDynamics\DotNetAgent\Logs
 For agent version 3.7.7 or earlier, the default is C:\Appdynamics\Logs.
Read and permissions to to the .NET App Agent install directory, by default Execute C:\Pr
ogram Files\AppDynamics\AppDynamics .NET Agent
Read and permissions the web application installation directory, for example Execute C:\i
netpub\wwwroot\myapp

Configuring an App Agent for .NET

To access the .NET Agent Configuration Utility

1. In the Windows menu, click AppDynamics -> .NET Agent -> AppDynamics Agent
.Configuration

2. If the "Warning: 3rd Party Profiler installed" message displays, it means that the
configuration utility has discovered another profiler. Windows only allows one profiler per
machine. Because AppDynamics uses a profiler you must uninstall any other profilers.

Click to exit and uninstall any pre-existing profiler. Check the registry to make sure thatYes

Copyright © AppDynamics 2012-2014 Page 12

the uninstall process cleaned up the registry entries. Use the warning message to identify
any undeleted profiler environment variables.

Video Tutorial: Manual Installation And Configuration

3. When the configuration utility detects legacy agent configurations from version 3.7.7 or earlier, it
displays the window.Upgrade Configuration

Answer to remove legacy configurations. For a list of affected configurations, See Yes To
.clean up legacy configurations

 Removing legacy configurations modifies web.config files causing IIS to restart affected
applications.

Answer to leave legacy configurations in place. You can remove them at a later time.No

4. When the utility discovers no further profiler conflicts or after any configuration clean up, the
welcome window displays.

Click to advance to .Next Log directory permissions

To set up the logs and account permissions

The first window helps you set up the location of the agent logs and provide the correct account
access to the logs.

1. If you want to change the default location of the log directory, click and select a newChange
location.

 The default logs directories are as follows:
 Windows Server 2008 and later: %ProgramData%\AppDynamics\DotNetAgent\Logs

 Windows Server 2003: %AllUsersProfile%\Application
Data\AppDynamics\DotNetAgent\Logs

2. If needed, add accounts for log directory permissions.
Commonly-used accounts are provided. If your application uses another account, enter the
Windows account you use to run your web application as defined by its application pool or the

https://appdynamics-static.com/education/video/dotNETAgentManualInstallationandConfiguration/dotNETAgentManualInstallationandConfiguration_player.html
http://docs.appdynamics.com/display/PRO14S/Upgrade+the+App+Agent+for+.NET#UpgradetheAppAgentfor.NET-Tocleanuplegacyconfigurations
http://docs.appdynamics.com/display/PRO14S/Upgrade+the+App+Agent+for+.NET#UpgradetheAppAgentfor.NET-Tocleanuplegacyconfigurations

Copyright © AppDynamics 2012-2014 Page 13

Windows service account. The account name must be valid on the operating system and have
permission to write to the log files directory.

3. Click . If you get a warning message, make sure that the account is valid on the system.Add

4. Click and the wizard confirms the list of accounts.Next

5. Click to advance to .Next Controller Configuration

To provide Controller configuration information

1. Enter the Controller access information and credentials.

The App Agent for .NET configuration utility only supports configuration of one Controller
and business application per server. Use tiers to organize different applications you
instrument on a single server.
For a SaaS Controller, enter the server name or IP, port number, account name, and access
key as provided to you by AppDynamics.
For an on-premise Controller, if you haven't already installed it, cancel this installation and
see . Otherwise enter the server name and port number of an existingInstall the Controller
Controller.
For a secure connection, click . Enable SSL

 The Controller must use a trusted certificate.
If needed, fill in the proxy information. Proxies that use authentication require additional
configuration.

2. Click to verify the connection.Test Controller Connection

3. Click to advance to the Next Application Configuration

http://docs.appdynamics.com/display/PRO14S/Install+the+Controller

Copyright © AppDynamics 2012-2014 Page 14

AppDynamics retrieves existing business application information from the Controller and displays it
in the left column. Controller connection status displays on the right.

4. Click to select business applications from theExisting Applications from the Controller
Controller.

If you haven't defined business applications in the Controller, the utility displays an empty list.

 Click to define a new business application. Be careful about spellings andNew Application
capitalization and note down the exact name.

 Do not use ampersands in the business application name; they are not supported at this
time.

5. Click to advance to .Next Assign IIS applications to tiers

To map business applications, tiers, and nodes to your application environment

1. Read about how AppDynamics uses business applications, tiers, and nodes to organize
application performance monitoring. In summary:

A business application is a set of modules and distributed services that together provide
business functionality.
A node is the basic unit of processing that AppDynamics monitors.
A tier represents a module in an application environment, such as an eCommerce website
or Inventory application.

See .Logical Model

2. Decide how to identify and name the tiers. Either AppDynamics will automatically configure tier
names, or you can manually configure them.

Use these guidelines for deciding whether to use automatic or manual naming:

To have AppDynamics instrument all IIS applications on a machine, choose .automatic
AppDynamics names tiers using this pattern:

IIS_site_name-IIS_application_name

To select the IIS applications on a machine to instrument with AppDynamics, choose manua
.l
Using manual naming, you supply the tier names and AppDynamics updates the
configuration file.

To let AppDynamics automatically name the tiers

1. In the window click .Assign IIS applications to tiers Automatic

2. If prompted, click to confirm Automatic configuration.OK

The configuration utility summarizes the configuration settings.

3. By default when you click the configuration utility restarts IIS.Next
 If you do not want to apply the configuration right away, uncheck the box. The Configuration

Utility saves the information and applies it the next time you restart IIS.

http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 15

4. If you proceed and click , the configuration utility logs its activities, including stopping andNext
restarting IIS, and reports any problems. Review the summary for any issues in red font. Green
font indicates the more interesting logged events. The summary shows any Warnings (W) or
Errors (E). If you have errors, contact . AppDynamics Support

5. When there are no errors, click .Next

6. Click to close the Configuration Utility. Done

To manually name the tiers

1. In the window click , then click .Assign IIS applications to tiers Manual Next

2. Assign IIS Applications to AppDynamics tiers.

Select a tier on the right and click a business application on the left. The assigned tier will be
highlighted in boldface.

 For large IIS installations, use the Max IIS tree depth pulldown to display all the projects. A
large tree depth may take some time to view.

To create new tiers, enter a name and click .Add Tier

http://www.appdynamics.com/support

Copyright © AppDynamics 2012-2014 Page 16

5. When you are done click . AppDynamics displays a configuration summary.Next

6. Review the configuration. If you need to make changes click .Back

7. On the window, un-check if you don't want to immediatelyConfiguration Summary Restart IIS
restart IIS.

You may restart later to apply your changes, or they will take effect after a reboot.

7. If you proceed and click , the Configuration Utility logs its activities, including stopping andNext
restarting IIS, and reports any problems.

Copyright © AppDynamics 2012-2014 Page 17

8. Review the configuration log summary.
As it applies the configuration, AppDynamics generates a log of the configuration activities and
displays a summary. Review the summary for any issues in red font. Green font indicates the more
interesting logged events. The summary shows any Warnings (W) or Errors (E). If you have
errors, contact AppDynamics Support.

9. Click . The wizard completes.Next

For troubleshooting information see Resolve App Agent for .NET Installation and Configuration
.Issues

Using a Configuration File from the Command Line

You can set up a .NET Agent configuration file and run it from the command line. This is useful
when you have multiple agents to configure.

To create a configuration file

1. From a command line, start the configuration utility:

AppDynamics.Agent.Winston.exe -s <SetupConfigurationFilePath>

For example:

c:\Program Files\AppDynamics\AppDynamics .NET
Agent\AppDynamics.Agent.Winston.exe -s
"c:\temp\configurationSavedSetupConfiguration.xml"

Copyright © AppDynamics 2012-2014 Page 18

The utility starts.
2. Configure the agent as described in the previous sections. The configuration is applied.
In addition, when the configuration completes, AppDynamics creates a setup file.

Use this setup file as an argument to the command line utility.

 To perform an , pass the configuration file directly to the MSI installerunattended installation
package. See .Unattended Installation for .NET

To run the configuration utility from the command line

1. Start the .NET Configuration Utility from the command line. Change the file path and setup file
path as needed.

AppDynamics.Agent.Winston.exe -c <SetupConfigurationFilePath>

For example:

c:\Program Files\AppDynamics\AppDynamics .NET
Agent\AppDynamics.Agent.Winston.exe -c
"c:\temp\configurationSavedSetupConfiguration.xml"

The utility runs in command line mode; the user interface does not launch.

When it finishes, the utility exits the process with status 0 for success or any other number for
failure.

2. Review the Winston.txt log file in the default logs directory for details.

Learn More

Video Tutorial: App Agent for .NET Manual Installation and Configuration
Install the App Agent for .NET
Naming Conventions for .NET Nodes

App Agent for .NET Directory Structure

App Agent for .NET Directory Structure
Executables
Log files
Agent configuration files
Coordinator Service configuration files
About Windows Server system directory variables

This topic details the default installation directories for the App Agent for .NET.

App Agent for .NET Directory Structure

https://appdynamics-static.com/education/video/dotNETAgentManualInstallationandConfiguration/dotNETAgentManualInstallationandConfiguration_player.html

Copyright © AppDynamics 2012-2014 Page 19

The App Agent for .NET installs to the following directories. To navigate to a directory, copy the
path and paste it into the Windows Explorer address bar.

Executables

The agent executables and supporting files install to the directory, theAppDynamics .NET Agent
same as previous versions:

Windows Server 2003 and later

%ProgramFiles%\AppDynamics\AppDynamics .NET Agent

Log files

The directory defaults to the following location:Logs

Windows Server 2008 and later

%ProgramData%\AppDynamics\DotNetAgent\Logs

Windows Server 2003

%AllUsersProfile%\Application Data\AppDynamics\DotNetAgent\Logs

Agent configuration files

The unified configuration file config.xml installs to the directory:Config

Windows Server 2008 and later

%ProgramData%\AppDynamics\DotNetAgent\Config

Windows Server 2003

%AllUsersProfile%\Application Data\AppDynamics\DotNetAgent\Config

Coordinator Service configuration files

The AppDynamics Agent Coordinator service writes configuration files from the Controller to the D
 directory:ata

Windows Server 2008 and later

%ProgramData%\AppDynamics\DotNetAgent\Data

Windows Server 2003

Copyright © AppDynamics 2012-2014 Page 20

%AllUsersProfile%\Application Data\AppDynamics\DotNetAgent\Data

About Windows Server system directory variables

%ProgramFiles% is located at for Windows Server 2003 and<system drive>\Program Files
later.

%ProgramData% is located at for Windows Server 2008 and<system drive>\Program Data
later.

%AllUsersProfile% is located at for<system drive>\Documents and Settings\All Users
Windows 2003.

Unattended Installation for .NET

Prepare for Unattended Installation
To create a setup configuration file
Sample setup configuration file

Perform Unattended Installation
Installation prerequisites
To perform an unattended installation

Setup Configuration File Properties
Winston element
Log File Directory element
Log File Folder Access Permissions element
Account element
AppDynamics Agent element

Learn More

This topic describes the process to run an unattended installation for the App Agent for .NET. For
more detail about how to install and configure the agent manually see Install the App Agent for

..NET

Prepare for Unattended Installation

The App Agent for .NET MSI installer package allows you to specify the path to a setup
configuration file to perform an unattended installation. The setup configuration file contains all the
properties you need to enable instrumentation for your .NET applications.

To create a setup configuration file

You must run the .NET MSI installer package on one computer before you can use the
AppDynamics Agent Configuration utility to create a setup configuration file. See Install the App

.Agent for .NET

 Setup configuration files created in previous versions of the AppDynamics Agent Configuration
utility work with the 3.8 installer.

1. Launch the AppDynamics Agent Configuration utility from the command line. Use the parame-s

Copyright © AppDynamics 2012-2014 Page 21

ter to specify the setup configuration file destination. See .To create a configuration file

AppDynamics.Agent.Winston.exe -s <path to setup configuration file>

2. Go through the configuration wizard normally.

The configuration utility saves the setup configuration file to the path you specified.

 The configuration utility only configures instrumentation for IIS applications.

3. Optional: To perform unattended installation for Windows services or for standalone
applications, you must edit the setup configuration file manually.

For Windows services, add a Windows Services block as a child of the App Agents element.
See .Configuring the App Agent for .NET for Windows Services
For standalone applications, add a Standalone Applications block as a child of the App
Agents element. See .Configuring the App Agent for .NET for Standalone Applications

Sample setup configuration file

The following example shows a setup configuration file that instruments two IIS Applications
(MainBC and SampleHTTPService), a Windows service (BasicWindowsService), and a
standalone application (MyStandaloneApp.exe).

The configuration file sets the log directory as C:\ProgramData\AppDynamics\DotNetAgent\Logs
and grants write permission to four accounts.

http://docs.appdynamics.com/display/PRO14S/Configure+the+App+Agent+for+.NET#ConfiguretheAppAgentfor.NET-Tocreateaconfigurationfile
http://docs.appdynamics.com/display/PRO14S/Enable+the+App+Agent+for+.NET+for+Windows+Services#EnabletheAppAgentfor.NETforWindowsServices-ConfiguringtheAppAgentfor.NETforWindowsServices
http://docs.appdynamics.com/display/PRO14S/Enable+the+App+Agent+for+.NET+for+Standalone+Applications#EnabletheAppAgentfor.NETforStandaloneApplications-ConfiguringtheAppAgentfor.NETforStandaloneApplications

Copyright © AppDynamics 2012-2014 Page 22

<winston>
 <logFileDirectory
directory="C:\ProgramData\AppDynamics\DotNetAgent\Logs" />
 <logFileFolderAccessPermissions defaultAccountsEnabled="false">
 <account name="NT AUTHORITY\LOCAL SERVICE" displayName="LOCAL
SERVICE" />
 <account name="NT AUTHORITY\SYSTEM" displayName="SYSTEM" />
 <account name="NT AUTHORITY\NETWORK SERVICE" displayName="NETWORK
SERVICE" />
 <account name="IIS_IUSRS" displayName="ApplicationPool Identity"
/>
 </logFileFolderAccessPermissions>
 <appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications>
 <application path="/" site="MainBC">
 <tier name="Main Site" />
 </application>
 <application path="/" site="SampleHTTPService">
 <tier name="HTTP Services" />
 </application>
 </applications>
 </IIS>
 <windows-services>
 <windows-service name="BasicWindowsService">
 <tier name="Service Tier"/>
 </windows-service>
 </windows-services>
 <standalone-applications>
 <standalone-application executable="MyStandaloneApp.exe">
 <tier name="Standalone App" />
 </standalone-application>
 </standalone-applications>
 </app-agents>
 </appdynamics-agent>
</winston>

Perform Unattended Installation

Copyright © AppDynamics 2012-2014 Page 23

After you have created a setup configuration file, use it to run an unattended installation.

Installation prerequisites

You must enable COM+ for the agent to function. See .Verify COM+ Services are enabled

To perform an unattended installation

1. Uninstall any existing agent.

2. Launch an elevated command prompt with full administrator privileges. See Start a Command
.Prompt as an Administrator

 Logging on to Windows as a member of the Administrators group does not grant sufficient
permissions to run the installer.

3. Run the agent MSI installer package from the elevated command prompt. Use the AD_SetupFil
 parameter to pass the absolute file path to the setup configuration file.e

msiexec /i dotNetAgentSetup64.msi /q /norestart /lv
%ProgramData%\AppDynamics\DotNetAgent\AgentInstaller.log AD_SetupFile=<absolute
path to setup config.xml>

For example:

msiexec /i dotNetAgentSetup64.msi /q /norestart /lv
%ProgramData%\AppDynamics\DotNetAgent\AgentInstaller.log
AD_SetupFile=C:\temp\SetupConfig.xml INSTALLDIR=D:\AppDynamics

4. Restart the AppDynamics.Agent.Coordinator.

net stop AppDynamics.Agent.Coordinator
net start AppDynamics.Agent.Coordinator

5. Restart applications you have instrumented: IIS, Windows services, or standalone applications.

For example, to restart IIS:

iisreset

Optionally use the parameter to customize the agent installation directory.INSTALLDIR

INSTALLDIR=<custom agent install directory>

http://docs.appdynamics.com/display/PRO14S/Resolve+App+Agent+for+.NET+Installation+and+Configuration+Issues#ResolveAppAgentfor.NETInstallationandConfigurationIssues-ToverifyCOM+Servicesareenabled
http://technet.microsoft.com/en-us/library/cc947813(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc947813(v=ws.10).aspx

Copyright © AppDynamics 2012-2014 Page 24

Setup Configuration File Properties

Winston element

The Winston element is the root element for the configuration file.

Required element: <winston>

Log File Directory element

The Log File Directory element is a child element of the Winston element. Use the attribdirectory
ute to specify the log directory. If you omit the Log File Directory element, we use the default
directory:

Windows Server 2008 and later: %ProgramData%\AppDynamics\DotNetAgent\Logs
 Windows Server 2003: %AllUsersProfile%\Application

Data\AppDynamics\DotNetAgent\Logs

Optional element: <logFileDirectory
directory="C:\ProgramData\AppDynamics\DotNetAgent\Logs" />

Log File Folder Access Permissions element

The Log File Folder Access Permissions is a child element of the Winston element. Unless you set
the attribute to false, we grant write access to the logs folder for thedefault accounts enabled
default accounts:

LOCAL SERVICE
SYSTEM
NETWORK SERVICE
ApplicationPool Identity

Optional element: <logFileFolderAccessPermissions
defaultAccountsEnabled="false">

Account element

The Account element is a child element of the Log File Folder Access Permissions element.
Create an element for the Windows account you use to run your application.Account

Set the attribute to the name of account you use to run your application: the account for thename
application pool for IIS or the Windows service account.

The attribute is a user-friendly name you choose for the account. The display namedisplay name
shows up in log entries about assigning permissions for the account.

Optional element: <account name="MyAppPoolIdentity" displayName="Custom
ApplicationPool Identity" />

For example, if you run a Windows service under a domain account:

<account name="MYDOMAIN\service_acct" displayName="Domain Service
Account" />

AppDynamics Agent element

Copyright © AppDynamics 2012-2014 Page 25

The AppDynamics Agent element is a child of the Winston element. It follows the same format as
the config.xml to define the agent configuration for all your .NET applications. See App Agent for

..NET Configuration Properties

Required element: <appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Learn More

Configure the App Agent for .NET
App Agent for .NET Configuration Properties
Enable the App Agent for .NET for Windows Services
Enable the App Agent for .NET for Standalone Applications

Upgrade the App Agent for .NET

Upgrade the App Agent for .NET from Version 3.7.8 or Later
To uninstall the old version of the agent
To install the new version of the agent
To resume monitoring

Upgrade the App Agent for .NET from Version 3.7.7 or Earlier
To uninstall the old version of the App Agent for .NET
To install the new version of the App Agent for .NET

Configure the App Agent for .NET
To configure the agent using automatic tier generation and assignment
To configure the agent using manual tier generation and assignment
To clean up legacy configurations
To resume monitoring

Updated App Agent for .NET Directory Structure
Learn More

This topic describes how to upgrade to the App Agent for .NET version 3.8. The instructions vary
based upon your current version of the App Agent of .NET.

Upgrade the App Agent for .NET from Version 3.7.8 or Later

The MSI installer package for the new version of the App Agent for .NET (the agent) installs the
updated agent files and maintains all legacy configurations. After you complete the installation,
start the AppDynamics.Agent.Coordinator service and instrumented applications to finish the
upgrade.

To uninstall the old version of the agent

1. Stop IIS, instrumented Windows services, and instrumented standalone applications.

 Failing to stop instrumented applications before uninstalling the App Agent for .NET may

Copyright © AppDynamics 2012-2014 Page 26

require you to reboot the machine.

2. Stop the service.AppDynamics.Agent.Coordinator

3. In the Control Panel, select Add/Remove Programs. Remove the .AppDynamics .NET Agent

To install the new version of the agent

See .To install the App Agent for .NET

 Don't launch AppDynamics Agent Configuration when the installer completes unless you want
to make changes to the existing configuration. The installer maintains existing agent
configurations.

To resume monitoring

1. Start the service.AppDynamics.Agent.Coordinator

net start AppDynamics.Agent.Coordinator

2. Start IIS, instrumented Windows services, and instrumented standalone applications.

Upgrade the App Agent for .NET from Version 3.7.7 or Earlier

Identify the right upgrade path based upon the method of tier naming and assignment (manual or
automatic) and the type of application you instrument:

If you use manual tier naming and assignment, the installer package upgrades
configurations for IIS applications and Windows services.
If you used automatic tier naming and assignment, run the configuration utility to update
configurations.
If you used standalone applications with 3.7.7 or earlier, follow the steps to Enable the App
Agent for .NET for Standalone Applications.

http://docs.appdynamics.com/display/PRO14S/Install+the+App+Agent+for+.NET#InstalltheAppAgentfor.NET-ToinstalltheAppAgentfor.NET

Copyright © AppDynamics 2012-2014 Page 27

The MSI installer package for the new version installs the updated agent files. After installing, you
may need to run the configuration utility to update your configuration and optionally remove legacy
configurations. Finally, restart the AppDynamics.Agent.Coordinator service and instrumented
applications.

To uninstall the old version of the App Agent for .NET

1. Stop IIS and instrumented Windows services.

 Failing to stop instrumented applications before uninstalling the App Agent for .NET may
require you to reboot the machine.

2. Stop the service.AppDynamics.Agent.Coordinator

3. In the Control Panel, select Add/Remove Programs. Remove the .AppDynamics .NET Agent

To install the new version of the App Agent for .NET

See .To install the App Agent for .NET

If you used the following environment variables with the earlier version, the MSI installer migrates
the configurations to the new configuration file:

AppDynamicsAgent_CallGraphOptions
AppDynamicsAgent_DisableAppPools
AppDynamicsAgent_EnableInProcesses
AppDynamicsAgent_IgnoreCLREnv
AppDynamicsAgent_Profiler_Classes

Configure the App Agent for .NET

Configure the agent based on your method of tier generation and assignment: or automatic manua
.l

 The App Agent for .NET configuration utility only supports configuration of one Controller per
server. If you previously used unsupported methods to configure different applications on the
same server to connect to different Controllers, you must reconfigure your logical model.

To configure the agent using automatic tier generation and assignment

If you used automatic configuration with the earlier version of the App Agent for .NET, run the
configuration utility to configure the agent:

1. Use the .NET Agent Configuration utility to reconfigure instrumentation for IIS applications.
Choose for the method of tier generation and assignment. See Automatic Configure the App

.Agent for .NET

2. Configure instrumentation for Windows services manually. See Enable the App Agent for .NET
.for Windows Services

To configure the agent using manual tier generation and assignment

For manual systems using manual tier generation and assignment, the installer package migrates
the configurations for IIS applications and for Windows services to the config.xml. At this stage, the
configuration for IIS applications and Windows services is complete.

http://docs.appdynamics.com/display/PRO14S/Install+the+App+Agent+for+.NET#InstalltheAppAgentfor.NET-ToinstalltheAppAgentfor.NET

Copyright © AppDynamics 2012-2014 Page 28

 If you choose not to launch the configuration utility and clean up legacy configurations, restart
the AppDynamics.Agent.Coordinator service.

net stop AppDynamics.Agent.Coordinator
net start AppDynamics.Agent.Coordinator

To clean up legacy configurations

You can clean up legacy configurations by launching the AppDynamics Agent Configuration utility.
When the utility detects agent settings from a previous version, it offers you the option to clean up.

 The clean up procedures modifies the web.config files causing an IIS restart.

1. Launch the AppDynamics Agent Configuration utility.
The Upgrade Configuration window opens.

2. Answer to clean up old AppDynamics configurations.Yes

The utility removes the following configurations:

AppDynamics configSections from web.config files for IIS applications and from
application.config files for Windows services.
Environment variables:

AppDynamicsAgent_IgnoreCLREnv
AppDynamicsAgent_CallGraphOptions
AppDynamicsAgent_EnableInProcesses
AppDynamicsAgent_DisableAppPools
AppDynamicsAgent_Profiler_Classes

3. Proceed through the wizard normally:

Verify or update the log directory and grant write permissions to it.
Verify the controller connection information.
Verify or update manual tier assignment.

To resume monitoring

Start IIS and instrumented Windows services.

Updated App Agent for .NET Directory Structure

Copyright © AppDynamics 2012-2014 Page 29

To learn more about the updated App Agent for .NET Directory Structure, See App Agent for .NET
.Directory Structure

Learn More

Install the App Agent for .NET
Configure the App Agent for .NET
Uninstall the App Agent for .NET
Agent - Controller Compatibility Matrix
Release Notes for AppDynamics Pro
Resolve App Agent for .NET Installation and Configuration Issues

Enable SSL for .NET

Before You Begin
Enable SSL for the App Agent for .NET

To configure SSL using the AppDynamics Agent Configuration utility
To configure SSL in the config.xml
Sample SaaS SSL config.xml configuration
Sample on-premise SSL config.xml configuration

Establish Trust for the Controller's SSL Certificate
Certificates signed by a publicly known Certificate Authority
Certificates signed by an Internal Certificate Authority
Self-Signed Certificates
Troubleshooting Tips

Learn More

This topic covers how to configure the App Agent for .NET (the agent) to connect to the Controller
using SSL. It assumes that you use a SaaS Controller or have configured the on-premise
Controller to use SSL.

Before You Begin

Before you configure the agent to enable SSL, gather the following information:

Identify if the Controller is SaaS or on-premise.
Identify the Controller SSL port.

For SaaS Controllers the SSL port is 443.
For on-premise Controllers the default SSL port is 8181, but you may configure the
Controller to listen for SSL on another port.

Identify the signature method for the Controller's SSL certificate:
A publicly known certificate authority (CA) signed the certificate. This applies for
Verisign, Thawte, and other commercial CAs.
A CA internal to your organization signed the certificate. Some companies maintain
internal certificate authorities to manage trust and encryption within their domain.
The Controller uses a self-signed certificate.

http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix
http://docs.appdynamics.com/display/PRO14S/Release+Notes+for+AppDynamics+Pro

Copyright © AppDynamics 2012-2014 Page 30

Enable SSL for the App Agent for .NET

There are two ways to update the SSL settings for the agent. You can use the AppDynamics
. Otherwise, edit the settings directly in the , see Agent Configuration Utility config.xml Where to

.Configure App Agent Properties

When you enable SSL for the App Agent for .NET, you automatically enable SSL for the .NET
Machine Agent.

To configure SSL using the AppDynamics Agent Configuration utility

1. Launch the AppDynamics Agent Configuration utility.

2. In the window, set the to the SSL port for theController Configuration Port Number
Controller.

For a , set the to 443.SAAS Controller Port Number
For an , set the to the on-premise SSL port. Theon-premise Controller Port Number
default is 8181.

3. Click .Enable SSL

This example demonstrates connection to an on-premise Controller listening for SSL on port 8181:

4. Click and proceed with the rest of the windows to complete the configuration.Next

5. Restart instrumented applications: IIS applications or application pools, Windows services, or
standalone applications.

If you use automatic tier configuration, restart IIS. For example, open a command prompt and run:

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 31

iisreset

Upon restart the agent connects with the Controller via SSL.

To configure SSL in the config.xml

1. Open the config.xml file as administrator. See .Where to Configure App Agent Properties

2. Update the SSL settings. See .Controller Element

Set the to the on-premise SSL port. The default is 8181. See Controller port attribute Cont
.roller port attribute

Set the to "true". See .Controller SSL attribute Controller ssl attribute

3. Save your changes.

4. Restart the AppDynamics.Agent.Coordinator service.

5. Restart instrumented applications: IIS applications or application pools, Windows services, or
standalone applications.

If you use Automatic configuration, restart IIS. For example, open a command prompt and run:

iisreset

Upon restart the agent connects with the Controller via SSL.

Sample SaaS SSL config.xml configuration

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycompany.saas.appdynamics.com" port="443" ssl="true">
 <application name="MyDotNetApplication" />
 </controller>
...
</appdynamics-agent>

Sample on-premise SSL config.xml configuration

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8181" ssl="true">
 <application name="MyDotNetApplication" />
 </controller>
...
</appdynamics-agent>

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-ControllerElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-Controllerportattribute
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-Controllerportattribute
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-Controllersslattribute

Copyright © AppDynamics 2012-2014 Page 32

Establish Trust for the Controller's SSL Certificate

The App Agent for .NET requires that the Common Name (CN) on the Controller certificate match
the DNS name of the Controller. Additionally, certificates for the root CA that signed the
Controller's SSL certificate must reside in the sWindows Trusted Root Certification Authorities
tore for the .Local Computer

Certificates signed by a publicly known Certificate Authority

The root certificates for most publicly trusted CA signing authorities, such as Verisign, Thawte, and
other commercial CAs, are in the Trusted Root Certification Authorities store by default.

Certificates signed by an Internal Certificate Authority

If your organization uses internal CA to sign certificates, you may need to obtain the root CA
certificate from your internal security management resource. To import the root certificate, see Add

.ing certificates to the Trusted Root Certification Authorities store for a local computer

This example shows how to use the Certificate snap-in for the Microsoft Management Console to
import a certificate for a Trusted Root Certification Authority:

 If an intermediate CA signed the Controller's certificate, you must import the certificate for the
intermediate CA in addition to the one for the root CA that signed the intermediate CA's certificate.
If your controller is publicly accessible, you can use a certificate checker to identify the certificates
required to complete the trust chain. See .the certificate checker from Thawte

http://technet.microsoft.com/en-us/library/cc754841.aspx#BKMK_addlocal
http://technet.microsoft.com/en-us/library/cc754841.aspx#BKMK_addlocal
https://ssltools.thawte.com/checker/views/certCheck.jsp

Copyright © AppDynamics 2012-2014 Page 33

This examples shows the store:Intermediate Certification Authorities

Self-Signed Certificates

The App Agent for .NET does not support self-signed certificates. In order to implement SSL, the
Controller must use a certificate signed by a trusted CA signing authority or an internal trusted root
CA. See .Implement Security

Troubleshooting Tips

If you imported certificates for a root or intermediate CA, verify the certificate store where
you imported them. Import them to .Certificates (Local Computer)

http://docs.appdynamics.com/display/PRO14S/Implement+Security

Copyright © AppDynamics 2012-2014 Page 34

1.

2.

The AppDynamics SaaS Controller uses certificates signed by Thawte. In some cases,
SaaS customers must import the Thawte root certificates into the Windows Trusted Root

 store.Certification Authorities

In some cases system administrators set up group policies that require external certificates
be imported to the store. If importing theThird-Party Root Certification Authorities
certificate for the root CA to the Windows Trusted Certification Authorities store doesn't
work, try the Third-Party Root Certification Authorities store.

Learn More

Implement Security
App Agent for .NET Configuration Properties

Enable the App Agent for .NET for Windows Services

Preparing to Configure the App Agent for .NET for Windows Services
Configuring the App Agent for .NET for Windows Services
Learn More

By default, AppDynamics enables the App Agent for .NET only for IIS worker processes. This topic
describes how to edit the config.xml file to enable the agent for Windows services.

Preparing to Configure the App Agent for .NET for Windows Services

Before you enable the App Agent for .NET for Windows services, you must install the agent. We
recommend using the AppDynamics Agent Configuration utility to perform basic configuration
tasks.

If you have not already done so, install the App Agent for .NET. See Install the App Agent
for .NET
Run the AppDynamics Agent Configuration utility to generate a config.xml. See Configure

http://docs.appdynamics.com/display/PRO14S/Implement+Security

Copyright © AppDynamics 2012-2014 Page 35

2.

1.

2.

.the App Agent for .NET
Even though the Configuration Utility only instruments IIS Applications, it is useful to create
the config.xml and specify Controller connection properties.

 If you have previously instrumented app agents for IIS applications, don't run the
configuration utility. You already have a config.xml.

Use the configuration utility to do the following:
Change the location of the Logs directory and assign permissions.
Configure and test connectivity to the Controller.
Set the Business Application for the agent.

Choose for the method of tier generation and assignment. Don't assign assign anyManual
tiers for any IIS Applications. This disables instrumentation for all IIS applications.

Configuring the App Agent for .NET for Windows Services

Once you have configured the Controller properties for the App Agent for .NET, instrument your
Windows service by adding an XML element for it to the config.xml.

Edit the config.xml file as an administrator. See .Where to Configure App Agent Properties

If you haven't instrumented IIS applications, the file contains minimal configurations for
Controller connectivity and the machine agent. Verify the Controller properties and the
Business Application name:

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications />
 </IIS>
 </app-agents>
</appdynamics-agent>

If you have already instrumented IIS applications, you see their configurations under the IIS
element.
Add the Windows Services block as a child of the App Agents element. Create a Windows
Service element for each Windows service you want to instrument. Use the Tier element to
assign the instrumented service to a tier in the Controller. See App Agent for .NET
Configuration Properties

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 36

2.

3.

<windows-services>
 <windows-service name="BasicWindowsService">
 <tier name="Service Tier"/>
 </windows-service>
 <windows-service name="SecondWindowsService">
 <tier name="Service Tier"/>
 </windows-service>
</windows-services>

Set the Windows Service element name attribute to the service name. The service name
may not be the same as the display name in the Services panel of the Server manager.

This sample config.xml demonstrates instrumentation for a Windows service:

Copyright © AppDynamics 2012-2014 Page 37

3.

4.
5.

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications />
 </IIS>
 <windows-services>
 <windows-service name="BasicWindowsService">
 <tier name="Service Tier"/>
 </windows-service>
 </windows-services>
 </app-agents>
</appdynamics-agent>

Restart the AppDynamics.Agent.Coordinator
Restart the Windows service.

Learn More

Mapping Application Services to the AppDynamics Model
Configure the App Agent for .NET
Install the App Agent for .NET
App Agent for .NET Configuration Properties

Enable the App Agent for .NET for Standalone Applications

Preparing to Configure the App Agent for .NET for Standalone Applications
Configuring the App Agent for .NET for Standalone Applications
Learn More

By default, AppDynamics enables the App Agent for .NET only for IIS worker processes. This topic
describes how to edit the config.xml file to enable the agent for standalone applications.

If your Windows service does not implement any of the frameworks we instrument by
default, you must configure a for a class/method in your service forPOCO entry point
the agent to begin instrumentation. See Supported Environments and Versions for

 and ..NET POCO Entry Points

http://docs.appdynamics.com/display/PRO14S/Mapping+Application+Services+to+the+AppDynamics+Model

Copyright © AppDynamics 2012-2014 Page 38

1.

2.

1.

Preparing to Configure the App Agent for .NET for Standalone Applications

Before you enable the App Agent for .NET for standalone applications, you must install the agent.
We recommend using the AppDynamics Agent Configuration utility to perform basic configuration
tasks.

If you have not already done so, install the App Agent for .NET. See Install the App Agent
for .NET
Run the AppDynamics Agent Configuration utility to generate a config.xml. See Configure

.the App Agent for .NET
Even though the Configuration Utility only instruments IIS Applications, it is useful to create
the config.xml and specify Controller connection properties.

 If you have previously instrumented app agents for IIS applications, don't run the
configuration utility. You already have a config.xml.

Use the configuration utility to do the following:
Change the location of the Logs directory and assign permissions.
Configure and test connectivity to the Controller.
Set the Business Application for the agent.

Choose for the method of tier generation and assignment. Don't assign assign anyManual
tiers for any IIS Applications. This disables instrumentation for all IIS applications.

Configuring the App Agent for .NET for Standalone Applications

Once you have configured the Controller properties for the App Agent for .NET, instrument your
standalone application by adding an xml element for it to the config.xml.

 Edit the config.xml file as an administrator. See .Where to Configure App Agent Properties
If you haven't instrumented IIS applications, the file contains minimal configurations for
Controlller connectivity and the machine agent. Verify the Controller properties and the
Business Application name

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 39

1.

2.

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications />
 </IIS>
 </app-agents>
</appdynamics-agent>

If you have already instrumented IIS applications, you will see their configurations under the
IIS element.
Add the Standalone Applications block as a child of the App Agents element. Create a
Standalone Application element for each standalone application you want to instrument. Use
the Tier element to assign the instrumented application to a tier in the Controller. See App
Agent for .NET Configuration Properties

<standalone-applications>
 <standalone-application executable="MyStandaloneApp.exe">
 <tier name="Standalone Tier" />
 </standalone-application>
 <standalone-application
executable="MyOtherStandaloneApp.exe">
 <tier name="Standalone Tier" />
 </standalone-application>
</standalone-applications>

Set the Standlone Application element executable attribute to the executable file name. Do
not include the full path to the executable.

For example, if the full path to the standalone application is C:\Program
Files\MyApplication\MyStandaloneApp.exe, set the executable element to
"MyStandaloneApp.exe". The file extension is optional, so "MyStandaloneApp" also works.

This sample config.xml demonstrates instrumentation for a standalone application:

Copyright © AppDynamics 2012-2014 Page 40

2.

3.
4.

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications />
 </IIS>
 <standalone-applications>
 <standalone-application executable="MyStandaloneApp.exe">
 <tier name="Standalone Tier" />
 </standalone-application>
 </standalone-applications>
 </app-agents>
</appdynamics-agent>

Restart the AppDynamics.Agent.Coordinator.
Restart the standalone application.

Learn More

Mapping Application Services to the AppDynamics Model
Configure the App Agent for .NET
Install the App Agent for .NET

AppDynamics for Windows Azure with NuGet
Prerequisites
Register for an AppDynamics for Windows Azure Account
Add the App Agent for .NET to Your Azure Solution
Learn More

Monitor your Azure cloud solutions with the AppDynamics for Windows Azure NuGet package.
Sign up for the AppDynamics add-on in the Windows Azure portal, then enable the AppDynamics
agent in your Visual Studio solution. If you can't use NuGet to install the App Agent for .NET, see

.Manually Install the App Agent for .NET on Windows Azure

If your standalone application does not implement any of the frameworks we
instrument by default, you must configure a for a class/method inPOCO entry point
your application for the agent to begin instrumentation. See Supported Environments

 and .and Versions for .NET POCO Entry Points

http://docs.appdynamics.com/display/PRO14S/Mapping+Application+Services+to+the+AppDynamics+Model

Copyright © AppDynamics 2012-2014 Page 41

Prerequisites

Visual Studio 2010 or later
A Visual Studio solution to monitor
Visual Studio must have the following permissions to the solution:

Read and permissions to each Write project directory
Read and permissions to each (*.csproj) fileWrite Visual Studio .NET C# Project
Read and permissions to the (ServiceDefinition.csdef) fileWrite Service Definition

Windows Azure SDK
Windows Azure account
If the Visual Studio Standalone Profiler is installed, you must uninstall it and remove related
registry entries.

Register for an AppDynamics for Windows Azure Account

If you haven't registered for an AppDynamics account, see Register for AppDynamics for Windows
.Azure

Once you've registered, we will send you a Welcome email with your URL and credentials to
connect to the AppDynamics Controller. If you already have AppDynamics credentials from
another product, you can sign in using them.

Add the App Agent for .NET to Your Azure Solution

Use the NuGet package manager to add the App Agent for .NET to your Azure solution in Visual
Studio.

1. In Visual Studio, right-click your solution name and chose Manage NuGet Packages for
.Solution

Copyright © AppDynamics 2012-2014 Page 42

2. Click the in the left menu and type "AppDynamics" in theNuGet official package source
search bar in the upper right.

3. Select and click .AppDynamics .NET Agent for Azure Install

4. Click the projects you want to monitor, then click .OK

Copyright © AppDynamics 2012-2014 Page 43

5. Click to agree to the license terms.I Accept

Copyright © AppDynamics 2012-2014 Page 44

6. Enter the connection information from your Welcome email:

Controller Host
Controller Port
Account Name
Account Key

We automatically populate with the name of your Windows Azure solution.Application Name

7. the Manage NuGet Packages window. Close

8. Verify the following:

Instrumented projects have an AppDynamics folder
The AppDynamics folder(s) contain an MSI installer package and a setup.cmd file
The ServiceDefinition.csdef has an AppDynamics startup task

Copyright © AppDynamics 2012-2014 Page 45

9. Right-click the Windows Azure cloud solution and click .Publish

Once you've successfully published your project, you're ready to log on to the Controller and begin
monitoring your solution!

Learn More

AppDynamics Essentials
AppDynamics for .NET
Quick Tour of the User Interface Video Tutorial

Manually Install the App Agent for .NET on Windows Azure

Prerequisites
Register for an AppDynamics Account

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Essentials
https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html
https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html

Copyright © AppDynamics 2012-2014 Page 46

AppDynamics Account Home Page
Download the App Agent for .NET
Add the App Agent for .NET to Windows Azure Roles
Publish the AppDynamics-Instrumented Application to Windows Azure
Monitor Your Application
Learn More

This topic describes how to manually install the App Agent for .NET on Windows Azure. To install
the App Agent for .NET on Windows Azure using NuGet, see AppDynamics for Windows Azure

.with NuGet

Prerequisites

Visual Studio 2010 or later
A Visual Studio solution to monitor
Windows Azure SDK
Windows Azure account
If the Visual Studio Standalone Profile is installed, you must uninstall it and clean up the
registry.

Register for an AppDynamics Account

If you haven't registered for an AppDynamics account, see Register for AppDynamics for Windows
.Azure

Once you've registered, we will send you a Welcome email with your URL and credentials to
connect to the AppDynamics Controller. If you already have AppDynamics credentials from
another product, you can sign in using them.

AppDynamics Account Home Page

Your AppDynamics account home page includes:

A link to the AppDynamics download site where you can download the App Agent for .NET
Controller URL where you log into your account on the AppDynamics controller hosted
service
AppDynamics credentials: Account, Username, and Access Key
Number of days left in your Pro trial
Links to the AppDynamics on-boarding videos and documentation

You can access your AppDynamics account home page at any time by entering its URL in a web
browser and signing in with your AppDynamics credentials.

Download the App Agent for .NET

To download the App Agent for .NET from AppDynamics:

1. Navigate to the AppDynamics download site. The URL is in your welcome email and on your
AppDynamics account home page.

2. Log in with your AppDynamics account name and access key.

3. Download the file named . Do not run the file.dotNetAgentSetup64.msi

Copyright © AppDynamics 2012-2014 Page 47

4. Download the file named .startup.cmd

 For convenience we've attached the same file to this document () and included thestartup.cmd
contents in step 5 below.

Add the App Agent for .NET to Windows Azure Roles

This step instruments the roles in your Visual Studio solution for monitoring by AppDynamics.
There is no traditional Windows wizard-style installation procedure required to use AppDynamics
for Windows Azure.

 These instructions apply to the AppDynamics Agent for .NET version 3.7.8 or later. If you
downloaded an earlier version, please download the latest version of the agent.

1. Either create a new Windows Azure cloud project in Visual Studio or open an existing Windows
Azure cloud project.

2. If you created a new project, add the Web role and/or Worker role projects to the solution.

3. To each Web and Worker role project that you want to monitor, add a new folder named AppDy
.namics

 The scripts look for the AppDynamics folder. Using a different name may cause the script to
fail.

4. Copy the dotNetAgentSetup64.msi you downloaded to the AppDynamics folder for each Web
and Worker role project.

Note that while each has a single attached agent MSI installer package, each role project role
 in the project requires a separate agent license.instance

5. Download the and add it to each Web and Worker role project that you want tostartup.cmd
monitor.

Alternatively, add a text file named startup.cmd and paste the following lines in it:

REM Install the AppDynamics agent on Windows Azure
SETLOCAL EnableExtensions

IF {%INTERNAL_APPDYNAMICS_AGENT_INSTALL_REBOOT%}=={true} (
 SETX INTERNAL_APPDYNAMICS_AGENT_INSTALL_REBOOT ""
 GOTO :END
)

REM Bypass the installation if this is emulated environment
IF {%EMULATED%}=={true} GOTO :END

REM Uninstall if .NET Agent already installed
IF {%COR_PROFILER%}=={AppDynamics.AgentProfiler} (
 start /wait msiexec /x {0C633F51-09FE-4AE4-A25F-F6CD167CC46E} /quiet /log
d:\aduninstall.log
 IF NOT %ERRORLEVEL%==0 SHUTDOWN /r /f /c "Reboot after uninstalling the
AppDynamics .NET Agent"
)
ELSE IF DEFINED COR_PROFILER GOTO :END

IF NOT EXIST AppDynamics\dotNetAgentSetup64.msi GOTO :END

http://docs.appdynamics.com/download/attachments/20187449/startup.cmd?version=1&modificationDate=1394226321000&api=v2
http://docs.appdynamics.com/download/attachments/20187449/startup.cmd?version=1&modificationDate=1394226321000&api=v2

Copyright © AppDynamics 2012-2014 Page 48

SET ControllerHost=%1
SET ControllerPort=%2
SET AccountName=%3
SET AccountAccessKey=%4
SET ControllerApplication=%5
SET ControllerSSLEnabled=%6

IF {%1}=={} (ECHO Syntax error: Missing AD_Agent_ControllerHost parameter
>>d:\adInstall.log) & (GOTO :END)
IF {%2}=={} (ECHO Syntax error: Missing AD_Agent_ControllerPort parameter
>>d:\adInstall.log) & (GOTO :END)
IF {%3}=={} (ECHO Syntax error: Missing AD_Agent_AccountName parameter
>>d:\adInstall.log) & (GOTO :END)
IF {%4}=={} (ECHO Syntax error: Missing AD_Agent_AccountAccessKey parameter
>>d:\adInstall.log) & (GOTO :END)
IF {%5}=={} (SET ControllerApplication=Default)
IF {%6}=={} (SET ControllerSSLEnabled=false)

REM Install the agent
start /wait msiexec /i AppDynamics\dotNetAgentSetup64.msi
AD_Agent_Environment=Azure AD_AzureRoleName=%RoleName%
AD_AzureRoleInstanceID=%RoleInstanceID% AD_Agent_ControllerHost=%ControllerHost%
AD_Agent_ControllerPort=%ControllerPort% AD_Agent_AccountName=%AccountName%
AD_Agent_AccountAccessKey=%AccountAccessKey%
AD_Agent_ControllerApplication=%ControllerApplication%
AD_Agent_ControllerSSLEnabled=%ControllerSSLEnabled% /quiet /log
d:\adInstall.log
IF %ERRORLEVEL%==0 (
 SETX INTERNAL_APPDYNAMICS_AGENT_INSTALL_REBOOT "true"
 REM Reboot the machine after installation in order to restart role CLR and
attach AppDynamics Agent to it
 SHUTDOWN /r /f /c "Reboot after installing the AppDynamics .NET Agent"
)

Copyright © AppDynamics 2012-2014 Page 49

:END
EXIT /B %ERRORLEVEL%

5. For each Web and Worker role to that you want to monitor, set the IMPORTANT: Copy to
 property for the dotNetAgentSetup64.msi file and for the startup.cmd file to Output Directory Cop

.y Always

6. In the file for the Windows Azure cloud project, add a Startup TaskServiceDefinition.csdef
element that invokes startup.cmd with parameters for each WorkerRole and WebRole element.

Add the following lines:

<Startup>
 <Task commandLine="AppDynamics\startup.cmd [your_controller_host]
[your_controller_port] [your_account_name] [your_access_key]
[your_application_name] [SSLEnabled]" executionContext="elevated"
taskType="simple">
 <Environment>
 <Variable name="EMULATED">
 <RoleInstanceValue xpath="/RoleEnvironment/Deployment/@emulated" />
 </Variable>
 </Environment>
 </Task>
 </Startup>

where:

your_controller_host and are the Controller host and port for youryour_controller_port
AppDynamics account, and and are youryour_account_name your_access_key
credentials. The Welcome email we sent when you registered with AppDynamics includes
this information. You can also find it on your AppDynamics account home page. See Registe

.r for AppDynamics for Windows Azure
your_application_name is the name you choose for your business application. This name
identifies the application in the AppDynamics Controller interface.
SSLEnabled is an optional property that defaults to "false". To enable SSL set your_contro

 to 443 and to "true".ller_port SSLEnabled

7. Verify the following:

Copyright © AppDynamics 2012-2014 Page 50

Instrumented projects have an AppDynamics folder
The AppDynamics folder(s) contain a dotNetAgentSetup64.msi and a startup.cmd file
For instrumented projects, you set the property for the .msi andCopy to Output Directory
.cmd files to Copy Always
The ServiceDefinition.csdef includes an AppDynamics startup task

Publish the AppDynamics-Instrumented Application to Windows Azure

1. In Visual Studio, click the Windows Azure cloud project.

2. Right-click. Click Publish...

Monitor Your Application

Once you've published your application and there is load on it, you can login to the Controller and
begin monitoring.

1. Log into the AppDynamics Controller at the URL given in your welcome email and on your
AppDynamics account home page.

2. Send some requests to your application so there is some traffic to monitor and wait a few
minutes.

3. In the AppDynamics Controller, click your application.

4. Monitor your application.

Learn More

Features Overview
Quick Tour of the User Interface Video Tutorial

Register for AppDynamics for Windows Azure

What is AppDynamics?

http://docs.appdynamics.com/display/PRO14S/Features+Overview
https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html
https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html

Copyright © AppDynamics 2012-2014 Page 51

Register for an AppDynamics for Windows Azure Account
Register for an AppDynamics for Windows Azure Account From Windows Azure
Marketplace
Next Steps
Learn More

Monitor your Azure cloud solutions with the AppDynamics for Windows Azure NuGet package.
Sign up for the AppDyanmics add-on in the Windows Azure portal, then enable the AppDynamics
agent in your Visual Studio solution.

What is AppDynamics?

AppDynamics is an application performance monitoring solution that helps you:

Identify problems, such as slow and stalled user requests and errors, in a production
environment
Troubleshoot and isolate the root cause of such problems

There are two components in AppDynamics:

App Agent: The App Agent for .NET collects data from your servers. You run a separate agent on
every role instance that you want to monitor. You install the agent as part of the NuGet package.

AppDynamics Controller: The agent sends information to an AppDynamics Controller hosted
service. Using a browser-based console, you log on to the Controller to monitor, analyze and
troubleshoot your application.

Register for an AppDynamics for Windows Azure Account

Use the Windows Azure portal to sign up for AppDynamics for Windows Azure.
1. Log on to the Windows Azure portal at .https://manage.windowsazure.com

2. Click at the bottom left corner of the portal.+NEW

https://manage.windowsazure.com

Copyright © AppDynamics 2012-2014 Page 52

3. In the left menu, click .STORE

4. Click in the list of services and click the arrow.AppDynamics NEXT

Copyright © AppDynamics 2012-2014 Page 53

5. Click the plan corresponding to the size (Extra Small, Small, Medium, etc.) and number of virtual
machines where you will install AppDynamics monitoring agents.

6. Select your and click the arrow.REGION NEXT

7. After the form validates the field and displays a green check, click the arrow. NAME NEXT

8. Review your purchase and click the to purchase.CHECK

You've successfully signed up for AppDynamics for Windows Azure!

Copyright © AppDynamics 2012-2014 Page 54

1.

Register for an AppDynamics for Windows Azure Account From Windows Azure Marketplace

1. Click or for AppDynamics on the Windows Azure Marketplace at Try Free Sign Up https://data
.market.azure.com/application/f9949031-b8b9-4da5-b500-c615f3f2a7cd

If you choose , you receive a free version of AppDynamics Pro for Windows Azure withSign Up
full functionality, which downgrades after 30 days to a free version of AppDynamics Lite for
Windows Azure with limited functionality. You do not need to provide a credit card for this option.
You can upgrade to AppDynamics Pro for Windows Azure at any time.

If you choose , you receive a free version of AppDynamics Pro for Windows Azure withTry Free
full functionality. You need to provide a credit card for this option. After 30 days your credit account
will be charged for continued use of AppDynamics Pro for Windows Azure, unless you cancel your
subscription.

You need one agent license for each role instance that you wish to monitor. For example, a site
running 2 Web role instances and 2 Worker role instances requires 4 agent licenses.

2. On the registration page, provide your user information, a password, email address, company
name, and the name of the application you are monitoring as you will publish it with Windows
Azure.

3. Click .Register Now

Next Steps

We'll send you a Welcome email with your URL and credentials to connect to the AppDynamics
Controller. Then you can use NuGet to add the App Agent for .NET to your Windows Azure
solution or install it manually.

To install the agent using NuGet, see .AppDynamics for Windows Azure with NuGet
To install the agent manually, see Manually Install the App Agent for .NET on Windows

.Azure

Learn More

AppDynamics for Windows Azure with NuGet
Manually Install the App Agent for .NET on Windows Azure
AppDynamics Essentials
AppDynamics for .NET

Uninstall the App Agent for .NET

This topic describes how to do a complete uninstall of the App Agent for .NET.

 Do not follow these instructions if you are doing an upgrade. If you want to upgrade to a new
version see .Upgrade the App Agent for .NET

To completely uninstall the App Agent for .NET

Stop IIS, instrumented Windows services, and instrumented standalone applications.
 Failing to stop instrumented applications before uninstalling the agent requires you to reboot

https://datamarket.azure.com/application/f9949031-b8b9-4da5-b500-c615f3f2a7cd
https://datamarket.azure.com/application/f9949031-b8b9-4da5-b500-c615f3f2a7cd
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Essentials

Copyright © AppDynamics 2012-2014 Page 55

1.

2.

3.

4.

5.

6.

the machine to complete the uninstall.

Stop the service.AppDynamics.Agent.Coordinator

In the Control Panel, select Add/Remove Programs. Remove the AppDynamics .NET
.Agent

The uninstall procedure does not remove configuration files. Delete the configuration
directory:

: Windows Server 2008 and later %ProgramData%\AppDynamics
Windows Server 2003: %AllUsersProfile%\Application Data\AppDynamics

Verify the uninstall deleted the AppDynamics executables directory. If not, delete it
manually:

: %ProgramFiles%\AppDynamicsWindows Server 2003 and later

Restart IIS, Windows services, and standalone applications.

Learn More

Upgrade the App Agent for .NET
Install the App Agent for .NET
Agent - Controller Compatibility Matrix
Release Notes for AppDynamics Pro

Resolve App Agent for .NET Installation and Configuration Issues

Resolve Agent-Controller Configuration Issues
To verify that the App Agent for .NET is reporting to the Controller
To check Internet Explorer proxy settings

Checklist for Resolving App Agent for .NET Installation Issues
Resolve App Agent for .NET Issues

Resolving Agent Installation Issues
Verify Administrative privileges
To verify COM+ Services are enabled
To generate a log for agent installation failures
To correct failed installation caused by other APM products

To remove associated "Environment" subkey for W2SVC and WAS
services in the registry:

Resolve Configuration Errors
Verify the configuration in the config.xml file

Resolve Log Issues
To verify that the .NET Agent directory has the correct permissions

Allowed groups for different IIS versions
Learn More

http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix
http://docs.appdynamics.com/display/PRO14S/Release+Notes+for+AppDynamics+Pro

Copyright © AppDynamics 2012-2014 Page 56

This topic covers how to solve installation and configuration problems for the App Agent for .NET.

Resolve Agent-Controller Configuration Issues

To verify that the App Agent for .NET is reporting to the Controller

Use the AppDynamics UI to verify that the agent is able to connect to the Controller.

1. In a browser open:

http://<controller-host>:<controller-port>/controller

If you can't connect to the controller in Internet Explorer, see To check for misconfigured IE proxy
.settings

2. Log in to the AppDynamics UI.

3. Select the application to open the Application Dashboard.

4. In the left navigation panel click and open the Health tab.Servers -> App Servers

The Health tab lists the tiers, their nodes, and App Agent Status. When an agent successfully
reports to the Controller, you see an "up" arrow symbol. For details see Verify App

.Agent-Controller Communication

When deploying multiple agents for the same tier, determine whether you get the correct
number of nodes reporting into the same tier.
After sending a request to your web application, data should appear on the AppDynamics
UI. The agents should be displayed in the Application Flow Map of the Application
Dashboard.

If no data appears after a few minutes:

Verify that the Agent is writing its log files:
: Windows Server 2008 and later %ProgramData%\AppDynamics\DotNetAgent\Logs

\AgentLog.txt
: Windows Server 2003 %AllUsersProfile%\Application

Data\AppDynamics\DotNetAgent\Logs\AgentLog.txt

http://docs.appdynamics.com/display/PRO14S/Verify+App+Agent-Controller+Communication
http://docs.appdynamics.com/display/PRO14S/Verify+App+Agent-Controller+Communication

Copyright © AppDynamics 2012-2014 Page 57

If the log file exists, open it and review it for errors.
If the log file doesn't exist, run the Windows Event Viewer and see the application
messages.
If there are no AppDynamics event messages, look for messages from the .NET Runtime.

To check Internet Explorer proxy settings

Misconfigured proxy settings in Internet Explorer may cause the App Agent for .NET to fail to
connect to the controller. If fails on the Controller ConfigurationTest Controller connection
window in the AppDynamics Agent Configuration utility, do the following:

1. Verify the Controller host and port settings are correct.

2. In Internet Explorer, open:

http://<controller-host>:<controller-port>/controller

3. If the connection also fails in Internet Explorer, check the proxy settings. See Change IE Proxy
.Settings

4. Correct or remove any incorrect proxy settings.

Checklist for Resolving App Agent for .NET Installation Issues

 Item Notes

Run the installer as
Administrator.

Verify Administrative
privileges

Verify that COM+ is enabled. To verify COM+ Services are
enabled

Verify permissions for Agent
directory.

To verify that the .NET Agent
directory has the correct
permissions based on the
site’s application pool identity.

Verify that the Agent is
compatible with the Controller.

Agent - Controller
Compatibility Matrix

http://windows.microsoft.com/en-us/windows/change-ie9-proxy-server-settings#1TC=windows-7
http://windows.microsoft.com/en-us/windows/change-ie9-proxy-server-settings#1TC=windows-7
http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix
http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix

Copyright © AppDynamics 2012-2014 Page 58

Verify the correct settings in
the config.xml:

Windows Server 2008 and
later:
%ProgramData%\AppDynam
ics\DotNetAgent\Config
\config.xml

:Windows Server 2003
%AllUsersProfile%\Appl
ication
Data\AppDynamics\DotNe
tAgent\Config\config.x
ml

Update the config.xml file to
include the App Agent for
.NET Configuration Properties
.

Resolve App Agent for .NET Issues

Resolving Agent Installation Issues

If the Agent installation is failing, check the following configurations in your environment:

Verify Administrative privileges

Ensure that you have the administrative privileges when you launch the installer. If the currently
user doesn't have sufficient privileges, the installer prompts you for an administrator password.

To verify COM+ Services are enabled

If you receive an error about the Appdynamics.Agent.Coordinator_service, ensure that the COM+
applications in your system are enabled.

1. From the Windows Start Menu, click .Run

2. Enter "services.msc" and click on the "OK" button. Windows opens the Services Console.

Copyright © AppDynamics 2012-2014 Page 59

3. Enable the COM+ services (if not enabled).

To generate a log for agent installation failures

If installer fails, use the command line utility to launch the installer.

msiexec /i $Path_to_the_MSI_File /l*v verbose.log

A verbose log for the .NET Agent is created at the same location where you saved the installer file.
Send this log to the .AppDynamics Support Team

To correct failed installation caused by other APM products

The .NET Agent installation may fail if there are other Application Performance Management
(APM) products installed in the same managed environment. Remove the associated
"Environment" subkey for certain services for the installed APM products.

To remove associated "Environment" subkey for W2SVC and WAS services in the registry:

1. Run Regedit or regedt32.
2. In regedit.exe, locate the following registry keys:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\W3SVC
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\WAS
3. Expand the keys.
4. Modify the subkey to delete the following values:Environment

COMPLUS_ProfAPI_ProfilerCompatibilitySetting=EnableV2Profiler
 COR_ENABLE_PROFILING=1
 COR_PROFILER= {a GUID}

http://help.appdynamics.com/tickets/new

Copyright © AppDynamics 2012-2014 Page 60

5. Restart the services. For more details see .How to restart the W2SVC and WAS services?

Resolve Configuration Errors

Verify the configuration in the config.xml file

Ensure that you have correctly configured the config.xml file for the App Agent for .NET. For
more detail, see .App Agent for .NET Configuration Properties
If you made manual edits to the config.xml, check the AgentLog.txt and WarnLog.txt for
errors. Invalid XML shows in the log as follows:

2014-03-13 10:49:18.7199 1232 dllhost 1 1 Error ConfigurationManager Error
reading the configuration file

Resolve Log Issues

The App Agent for .NET writes logs to the following directories:

Windows Server 2008 and later: %ProgramData%\AppDynamics\DotNetAgent\Logs
: Windows Server 2003 %AllUsersProfile%\Application

Data\AppDynamics\DotNetAgent\Logs

The agent will not generate logs if the agent directory does not have sufficient permissions
permissions.

 If the installation doesn't create the AppDynamics directory, contact IMPORTANT: AppDynamic
.s Support Team

To verify that the .NET Agent directory has the correct permissions

1. Click .IIS -> Application pools
IIS displays the list of application pools for your machine.

http://technet.microsoft.com/en-us/library/cc736564%28WS.10%29.aspx
http://help.appdynamics.com/tickets/new
http://help.appdynamics.com/tickets/new

Copyright © AppDynamics 2012-2014 Page 61

2. Right-click on a particular application pool.

3. Click .Advanced Settings

IIS displays the Application Pool Identity for that application.

Copyright © AppDynamics 2012-2014 Page 62

4. Ensure that your Agent Directory also has the same permissions as your site's application
pools.

Navigate to AppDynamics .NET App Server Agent directory location.
Right-click on the "logs" directory for the App Server Agent and select .Properties

Copyright © AppDynamics 2012-2014 Page 63

Click the tab and verify that the same Application Pool Identity is specified for theSecurity
.NET Agent directory.

Copyright © AppDynamics 2012-2014 Page 64

If the Agent's logs directory does not have the required permissions:

1. In the Security tab, click .Edit

2. Click to add new permissions to the Agent directory.Add

3. Click .Advanced

Copyright © AppDynamics 2012-2014 Page 65

4. Click to find all the users, groups, or built-in security principals on your machine.Find Now

5. Select the required group (see the information given below for " ") from the listAllowed groups
and click .OK

6. Provide the read and write permissions for the selected user/group/security principal to the
Agent directory and click .OK

7. Click .Apply

Allowed groups for different IIS versions

For IIS v6.x, following settings are applicable for Application Pool Identities:

Application Pool Identity Permission Level

LocalService LOCAL SERVICE

LocalSystem SYSTEM

NetworkService NETWORK SERVICE

Copyright © AppDynamics 2012-2014 Page 66

Custom Account Provide the exact name of the account.

For IIS v7.0 and later, following settings are applicable for Application Pool Identities:

Application Pool Identity Permission Level

LocalService LOCAL SERVICE

LocalSystem SYSTEM

NetworkService NETWORK SERVICE

ApplicationPoolIdentity Provide the group level permissions for
IIS_IUSRS Group
(see the screenshot given below).

Custom Account Provide the exact name of the account.

For example, if your application has the identity "ApplicationPoolIdentity", you must provide the
permissions for "IIS_IUSRS" group to your Agent's directory.

Copyright © AppDynamics 2012-2014 Page 67

Learn More

Install the App Agent for .NET

Configure AppDynamics for .NET
Enable Thread Correlation for .NET
Enable Correlation for .NET Remoting
Configure Backend Detection for .NET
Configure Business Transaction Detection for .NET
Configure Application Domain Monitoring
Instrument the DefaultDomain for Standalone Applications
Getter Chains in .NET Configurations
Enable Monitoring for Windows Performance Counters
Configure the .NET Machine Agent
Enable Instrumentation for WCF Data Services

Enable Thread Correlation for .NET

To enable thread correlation for .NET applications
Learn More

This topic describes how to enable thread correlation for .NET applications.

AppDynamics supports instrumentation for Thread.Start and ThreadPool.QueueUserWorkItem on
the Common Language Runtime (CLR) 2.x and CLR 4.x.

 For versions 3.8 - 3.8.4, the App Agent for .NET instruments ThreadPool.QueueUserWorkItem
CLR 4 () by default. , youThreadCorrelationThreadPoolCLR4Instrumentor New in 3.8.5
must enable the async-tracking node property.

To enable thread correlation for .NET applications

Configure all instrumentation settings for the App Agent for .NET in the config.xml file. See Where
.to Configure App Agent Properties

1. Launch a text editor as administrator.

2. Edit the config.xml file as an administrator. See Where to Configure App Agent Properties.

3. Copy the code block below to a child element of the Machine Agent element. (See Machine
):Agent Element

<instrumentation>
 <instrumentor name="ThreadCorrelationThreadPoolCLR2Instrumentor"
enabled="true"/>
 <instrumentor name="ThreadStartCLR2Instrumentor" enabled="true"/>
 <instrumentor name="ThreadStartCLR4Instrumentor" enabled="true"/>
 </instrumentation>

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-async-tracking
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement

Copyright © AppDynamics 2012-2014 Page 68

1.

2.

For example:

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
 <machine-agent>
 <!--Enable thread correlation-->
 <instrumentation>
 <instrumentor name="ThreadCorrelationThreadPoolCLR2Instrumentor"
enabled="true"/>
 <instrumentor name="ThreadStartCLR2Instrumentor" enabled="true"/>
 <instrumentor name="ThreadStartCLR4Instrumentor" enabled="true"/>
 </instrumentation>
 </machine-agent>
...
</appdynamics-agent>

The configuration syntax is .enabled="true"

4. Save the config.xml file.

5. New in 3.8.5, enable the async-tracking node property.

6. Restart the AppDyanmics.Agent.Coordinator Service.

7. Restart instrumented applications for your changes to take effect.

Learn More

Configure Backend Detection for .NET
Monitor Remote Services

Enable Correlation for .NET Remoting

Instrumenting Applications That Use .NET Remoting
To enable correlation for .NET remoting
To specify an agent trigger

Learn More

Developers use to build distributed applications that share objects across.NET remoting
processes or across application domains running in the same process. AppDynamics
doesn't enable correlation for .NET remoting functions by default.

Instrumenting Applications That Use .NET Remoting

You can configure the App Agent for .NET to discover .NET remoting entry and exit points.

To enable correlation for .NET remoting

Launch a text editor as administrator.

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-async-tracking
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.100).aspx

Copyright © AppDynamics 2012-2014 Page 69

2.

3.

4.
5.
6.

1.

Edit the config.xml file as an administrator. See Where to Configure App Agent
.Properties

Copy the code block below to a child element of the Machine Agent element. (See Ma
):chine Agent Element

<instrumentation>
 <instrumentor name="RemotingMscorlibEntryInstrumentor"
enabled="true"/>
 <instrumentor name="RemotingExitInstrumentor"
enabled="true"/>
 </instrumentation>

For example:

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
 <machine-agent>
 <!--Enable correlation for .NET remoting-->
 <instrumentation>
 <instrumentor name="RemotingMscorlibEntryInstrumentor"
enabled="true"/>
 <instrumentor name="RemotingExitInstrumentor"
enabled="true"/>
 </instrumentation>
 </machine-agent>
...
</appdynamics-agent>

Save the config.xml file.
Restart the AppDyanmics.Agent.Coordinator Service.
Restart instrumented applications for your changes to take effect.

If the agent doesn't discover the entry points after configuration, .specify an agent trigger

To specify an agent trigger

.NET remoting entry point functions execute in low-level .NET libraries that may not trigger
automatic agent instrumentation. , if the agent doesn't discover the .NETNew in 3.8.1
remoting entry points after configuration you can specify a function that triggers the agent to
begin instrumentation.

Identify a function to trigger the agent to begin instrumentation. The function can be
any function that executes as part of the application process.

For example, consider the following code for a MovieTicket remoting object. In this
case, use the function GetTicketStatus to trigger the agent.

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement

Copyright © AppDynamics 2012-2014 Page 70

1.

2.

3.

4.

using System;
namespace MovieGoer
{
 public class MovieTicket : MarshalByRefObject
 {
 public MovieTicket()
 {
 }
 public string GetTicketStatus(string stringToPrint)
 {
 return String.Format("Enquiry for {0} -- Sending back
status: {1}", stringToPrint, "Ticket Confirmed");
 }
 }
}

Edit the config.xml file as an administrator. See Where to Configure App Agent
.Properties

Update the Instrumentation element to include the AgentTriggerInstrumentor. (See Ma
):chine Agent Element

<instrumentation>
 <instrumentor name="AgentTriggerInstrumentor" enabled="true"
args="" />
 <instrumentor name="RemotingMscorlibEntryInstrumentor"
enabled="true"/>
 <instrumentor name="RemotingExitInstrumentor"
enabled="true"/>
 </instrumentation>

Set the AgentTriggerInstrumentor value to the name of the trigger function fromargs
step 1.

For example:

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement

Copyright © AppDynamics 2012-2014 Page 71

4.

5.
6.

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
 <machine-agent>
 <!--Enable correlation for .NET remoting-->
 <instrumentation>
 <instrumentor name="AgentTriggerInstrumentor" enabled="true"
args="MovieGoer.MovieTicket.GetTicketStatus" />
 <instrumentor name="RemotingMscorlibEntryInstrumentor"
enabled="true"/>
 <instrumentor name="RemotingExitInstrumentor"
enabled="true"/>
 </instrumentation>
 </machine-agent>
...
</appdynamics-agent>

Save the config.xml file.
Restart instrumented applications for your changes to take effect.

Learn More

Configure Backend Detection for .NET
Monitor Remote Services

Configure Backend Detection for .NET

Types of Exit Points
View the Discovery Rules
Revise Backend Discovery Rules

Change the Default Discovery Rules
Add Backend Discovery Rules
Add Custom Exit Points

Propagate Changes to Other Tiers or Applications
Learn More

To review general information about monitoring databases and remote services (collectively
known as backends) and for an overview of backend configuration see .Backend Monitoring

Types of Exit Points

Each automatically discovered backend type has a default discovery rule and a set of configurable
properties. See the following:

http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 72

WCF Exit Points for .NET
Message Queue Exit Points for .NET
ADO.NET Exit Points
HTTP Exit Points for .NET
Web Services Exit Points for .NET
Configure Custom Exit Points for .NET

For information on All Other Traffic transactions, see .Backend Monitoring

View the Discovery Rules

To view the discovery rules for an automatically discovered backend, access the backend
configuration screen using these steps:

1. Select the application.
2. In the left navigation pane, click .Configure -> Instrumentation
3. Select the tab.Backend Detection
4. Select the application and the tab corresponding to your agent platform (Java, .NET, PHP).

The Automatic Backend Discovery default configurations for that agent are listed.

5. In the Automatic Backend Discovery list, click the backend type to view.
A summary of the configuration appears on the right. For example, the following figure shows that
JMS backends are auto-discovered using the Destination, Destination Type, and Vendor.

Revise Backend Discovery Rules

If the default settings don't give you exactly what you need, you can refine the configuration in the

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 73

following ways:

Change the default discovery rules:
Enable or disable one or more of the properties
Use one or more specified segments of a property
Run a regular expression on a property
Execute a method on a property

Add new discovery rules

Add custom exit points

The precise configurations vary according to the backend type. These general features are
configurable:

Discovery Enabled - You can enable and disable automatic discovery for the backend type.
Undiscovered backends are not monitored.

Correlation Enabled - You can enable and disable correlation. Correlation enables
AppDynamics to tag, trace, and learn about application calls to and through the backend to
other remote services or tiers. For example, if a call is made from Tier1 -> Backend1 ->
Tier2, Tier2 knows about the transaction flow because the agent "tags" the outbound call
from Backend1 to identify it as related to the same transaction that called Backend1 from
Tier1. If you do not care about activity downstream from the backend, you may want to
disable correlation.

Backend Naming - You can configure how backends are named.

Change the Default Discovery Rules

When you need to revise the default set of discovery rules, in many cases, you can achieve the
visibility you need by making adjustments to the default automatic discovery rules. For some
scenarios, you might want to disable some or all of the default rules and create custom rules for
detecting all your backends. AppDynamics provides flexibility for configuring backend detection.

For example, detection of HTTP backends is enabled by default. In Java environments, HTTP
backends are identified by the host and port and correlation with the application is enabled. To
change the discovery rule for HTTP backends in some way, such as disabling correlation, omitting
a property from the detected name, or using only certain segments of a property in the name, you
edit the HTTP automatic discovery rule.

Review the rules for each exit point to determine the best course of action for your application if
the default discovery rules do not give the results you need for your monitoring strategy.

To change default backend automatic discovery rules

1. From the left-hand navigation panel, select . Then select the Configure -> Instrumentation Bac
 tab and the application or tier you want to configure.kend Detection

2. In the Automatic Backend Discovery list, select the backend type to modify.
The rule summary appears in the Automatic Discovery panel on the right.

3. Click .Edit Automatic Discovery
The Edit Automatic Backend Discovery Rule window appears.

Copyright © AppDynamics 2012-2014 Page 74

4. For each property that you want to configure:

Select the property in the property list.
Check the property check box to use the property for detection; clear the check box to omit
it.
If you are using the property, choose how the property is used from the drop-down list.

If you have a complex property, such as the URL, destination, or a query string, and you
want to eliminate some parts of it or need some additional manipulation you can use an
option from the second drop-down list such as or Run a Regular Expression on it Execute

. Each option has associated configuration parameters. Formethods on it (getter chain)
example, you have options for manipulating the segments of the .URL

Copyright © AppDynamics 2012-2014 Page 75

5. Check to enable the rule; clear the check box to disable it.Enabled

6. Check to enable correlation.Correlation Enabled

7. Click .OK

Add Backend Discovery Rules

AppDynamics provides the additional flexibility to create new custom discovery rules for the
automatically discovered backend types. Custom rules include the following settings:

Name for the custom rule.
Priority used to set precedence for custom rules.
Match Conditions used to identify which backends are subject to the custom naming rules.
Backend Naming Configuration used to name the backends matching the match
conditions.

The window for adding custom discovery rules looks like this:

Copyright © AppDynamics 2012-2014 Page 76

To create a custom discovery rule for an automatically discovered backend type, use these steps:

1. In the Automatic Backend Discovery list, select the backend type.
The Custom Discovery Rules editor appears in the right panel below the Automatic Discovery
panel.

2. Click (the + icon) to create a new rule or select an existing rule from the list and click theAdd
edit icon to modify one.

Copyright © AppDynamics 2012-2014 Page 77

3. Enter a name for the custom rule.

4. Confirm the settings for and (if applicable).Enabled Correlation Enabled

4. Enter the priority for the custom rule compared to other custom rules for this backend type. The
higher the number, the higher the priority. A value of 0 (zero) indicates that the default rule should
be used.

5. In the next section, configure the match conditions.
Match conditions are used to identify which backends should use the custom rule. Backends that
do not meet all the defined match conditions are discovered according to the default rule.

7. In the next section, configure the naming for the backends matching the rule. The naming
configuration must include the property used by the match condition.

8. Save the configuration.
See specific exit points for examples.

Add Custom Exit Points

When your application has backends that are not automatically discovered, you can enable
discovery using custom exit points. To do this, you need to know the class and method used to
identify the backend. See Configure Custom Exit Points for Java.

Propagate Changes to Other Tiers or Applications

When you have made changes to the backend detection rules, you may want to propagate your
changes to other tiers or applications.

To copy an entire backend detection configuration to all tiers

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java

Copyright © AppDynamics 2012-2014 Page 78

1. Access the backend detection window. See .View the Discovery Rules

2. In the left panel select the application or tier whose configuration you want to copy.

3. Click .Configure all Tiers to use this Configuration

To copy an entire backend detection configuration to another tier or application

1. Access the backend detection window. See .View the Discovery Rules

2. In the left panel select the application or tier whose configuration you want to copy.

3. Click .Copy

4. In the Application/Tier browser, choose the application or tier to copy the configuration to.

5. Click .OK

Learn More

Backend Monitoring
Monitor Databases
Monitor Remote Services

WCF Exit Points for .NET

Auto-Discovery and Default Naming
Configurable Properties
Changing the Default WCF Automatic Discovery and Naming
Learn More

This topic explains WCF exit point configuration. To review general information about monitoring
databases and remote services (collectively known as backends) and for an overview of backend
configuration see .Backend Monitoring

Auto-Discovery and Default Naming

By default, AppDynamics automatically detects and identifies WCF exit points (backends) when an
application uses the WCF client libary.

The default WCF automatic discovery rule uses the remote address property. From the enabled
properties AppDynamics derives a display name using the remote address, for example:

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Databases
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 79

By default, AppDynamics groups multiple backends of the same type together on the application
flow map.

The backend properties for the WCF backend can be viewed on the Remote Services dashboard.

Configurable Properties

Configurable Properties Property Used by Default
in Detection and Naming

Description

Remote Address Yes URL minus the query,
fragment and user information
(name and password)

Operation Contract No WCF operation name

URL No full URL

Host No host portion of URL

Port No port number if present in the
URL, otherwise protocol
default

SOAP Action No In the case that a web service
is called, the SOAP action

Changing the Default WCF Automatic Discovery and Naming

Depending on what you need to monitor, you can change the default configuration to use other
properties.

Copyright © AppDynamics 2012-2014 Page 80

For procedures, see .Configure Backend Detection for .NET

Learn More

Backend Monitoring
Monitor Remote Services
Configure Custom Exit Points

Message Queue Exit Points for .NET

Auto-Discovery and Default Naming
Queues Configurable Properties
Changing the Default Queues Automatic Discovery and Naming
Learn More

This topic explains exit point configuration for message queue exit points. To review general
information about monitoring databases and remote services (collectively known as backends) and
for an overview of backend configuration see .Backend Monitoring

Auto-Discovery and Default Naming

By default, AppDynamics automatically detects and identifies many message queue exit points.
For a list of the supported message-oriented middleware products, see Supported Remote

.Services for the App Agent for .NET

The default queue automatic discovery rule uses the destination property. From the enabled
properties AppDynamics derives a display name as shown here:

By default, AppDynamics groups multiple backends of the same type together on the application
flow map.

The backend properties for the queue can be viewed on the Remote Server dashboard.

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedRemoteServicesfortheAppAgentfor.NET
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedRemoteServicesfortheAppAgentfor.NET

Copyright © AppDynamics 2012-2014 Page 81

Queues Configurable Properties

In general, the properties listed below are used for queue exit points. However, each
message-oriented product is different and there may be variations in the properties or their names.

Configurable Properties Property Used by Default
in Detection and Naming

Description

Host No Queue server name

Destination Yes Name of topic or queue

Destination Type No queue or topic

Vendor No Vendor from the client library

Changing the Default Queues Automatic Discovery and Naming

Depending on what you need to monitor, you can change the default configuration by disabling
one or more properties.
For configuration procedures, see .Configure Backend Detection for .NET

Learn More

Backend Monitoring
Monitor Remote Services
Enable Correlation for .NET Remoting
Configure Custom Exit Points

Monitor RabbitMQ Backends for .NET

Remote Service Detection
Exit Points

Backend Naming
To refine backend naming

Entry Points
BasicGet Method

Note
For MSMQ, correlation for downstream calls is not supported.
For .NET remoting, additional configuration is needed to get downstream correlation. See

.Enable Correlation for .NET Remoting

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points

Copyright © AppDynamics 2012-2014 Page 82

HandleBasicDeliver Method
Learn More

The App Agent for .NET (agent) automatically discovers RabbitMQ remote services. This topic
covers the methods we instrument for RabbitMQ backends and the backend naming convention.

Remote Service Detection

AppDynamics auto-detects RabbitMQ backends based upon calls from instrumented tiers.
RabbitMQ exit points are methods that publish or push messages to a queue. RabbitMQ entry
points are methods that listen or poll for new messages in the queue.

To see RabbitMQ in the list of backends, in the left navigation pane click Servers->Remote
.Services

Exit Points

The agent discovers a RabbitMQ backend exit point when your application sends a message to
the queue using the method.BasicPublish()

Backend Naming

By default, the agent names the RabbitMQ backend for the exchange parameter of the BasicPub
 method.lish()

For example:

model.BasicPublish("MyExchange", "", false, false,
 basicProperties, Encoding.UTF8.GetBytes(message));

In this case the agent names the queue .MyExchange

You can refine the backend name to include some or all segments of the routing key. To configure
RabbitMQ naming you must be familiar with your implementation RabbitMQ exchanges and
routing keys. See .RabbitMQ Exchanges and Exchange Types

To refine backend naming

Register the node property. For instructions on how to set a node property, see rmqsegments Ap
.p Agent Node Properties

Name: rmqsegments

http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 83

: "Configure RabbitMQ naming to include routing key segments."Description
: IntegerType
: <integer>Value

The routing key is a string. The agent treats dot-separated (".") substrings of the routing key as
segments. Set the value to an integer that represents the number of routing key segments to
include in the name.

In the following example the routing key is . Set the rmqsegments value to "2" to nameabc.def.ghi
the queue .MyExchange.abc.def

model.BasicPublish("MyExchange", "abc.def.ghi", false, false,
 basicProperties, Encoding.UTF8.GetBytes(message));

After you save the node property, the Controller sends the configuration to the agent. After some
time the RabbitMQ backend shows up with the new name.

Entry Points

The agent discovers RabbitMQ backend entry point when your application polls the the queue.
AppDynamics auto-detects RabbitMQ based upon the following patterns:

BasicGet
HandleBasicDeliver

BasicGet Method

The agent detects the pattern below where the application periodically polls the message queue
using the method. The call timing is limited to time spent inside the loop. TheBasicGet() while
timer only starts when the BasicGet result returns a value at line 4. The timer ends when the next
BasicGet executes. In this example, the application polls every five seconds, so the execution time
equals the time in the loop plus five seconds.if

Copyright © AppDynamics 2012-2014 Page 84

while (true)
 {
 var result = channel.BasicGet("MyExchange", true);
 if (result != null)
 {
 var body = result.Body;
 var message = Encoding.UTF8.GetString(body);
 Console.WriteLine("Received: {0}.", message);
 }

 Thread.Sleep(5000);
 }

HandleBasicDeliver Method

The agent detects the method for custom implementations of the HandleBasicDeliver() IBas
 interface. In this case the call timing reflects the execution time for theicConsumer

HandleBasicDeliver method.

Learn More

RabbitMQ Exchanges and Exchange Types

RabbitMQ Monitoring Extension

App Agent Node Properties

App Agent Node Properties Reference by Type

ADO.NET Exit Points

Auto-Discovery and Default Naming
Configurable Properties
Changing the Default ADO.NET Automatic Discovery and Naming

Examples
Different ADO.NET Providers

Learn More

This topic explains ADO.NET exit point configuration. To review general information about
monitoring databases and remote services (collectively known as backends) and for an overview
of backend configuration see .Backend Monitoring

Auto-Discovery and Default Naming

ADO.NET data providers implementing standard Microsoft interfaces are automatically discovered
as backends. For a complete list, see .Supported ADO.NET Clients for the .NET Agent

Because the ADO.NET API is interface-based, by default AppDynamics instruments all ADO.NET
database providers that implement these interfaces.

For database identification, AppDynamics uses information from the ADO.NET connection string.

http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://appsphere.appdynamics.com/t5/AppDynamics-eXchange/RabbitMQ-Monitoring-Extension/idi-p/6037
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference+by+Type
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedADO.NETClientsforthe.NETAgent

Copyright © AppDynamics 2012-2014 Page 85

The connection string specifies the server address and schema or the local file name. Most
connection strings are formatted according to well-known rules that can be parsed and distilled to
a database name. However, because there is no standard on the connection string, it is up to the
ADO.NET provider implementer to choose the format.

For some providers, AppDynamics may fail to parse the connection string. In these cases, the
.NET agent uses the complete connection string minus any user password. The property is labeled

 and the value shows the connection string minus any userADO.NET connection string
password.

The backend properties can be viewed on the .Database Dashboard

Configurable Properties

You can enable or disable the use of the following properties for ADO.NET exit points.

Configurable Properties Property Used by Default
in Detection and Naming

Description

Host Yes Data source or database
server. Labeled Data Source
on the Backend Dashboard.

Copyright © AppDynamics 2012-2014 Page 86

Database Yes Database

Vendor No Type of the client-side
ADO.NET library. Labeled Pro

 on the Backendvider type
Dashboard

Connection String No Full connection string with
password filtered out

Port No Port number. This is seldom
used to identify ADO.NET
databases.

Changing the Default ADO.NET Automatic Discovery and Naming

There may be times when you want to change the default configuration depending on exactly what
you need to monitor. For example, when you have multiple databases on the same server, you
may need to revise the automatic discovery rule. Doing this enables you to more effectively
monitor the key performance indicators (KPIs) that are of most interest to you.
For configuration procedures, see .Configure Backend Detection for .NET

Examples

Different ADO.NET Providers

If you have different ADO.NET providers connecting to a single Oracle database, you might be
using both the Microsoft implementation of ADO.NET and the Oracle client, ODP.NET. In this
case, you could enable the Vendor property to split the single Oracle backend into two separate
backends.

Learn More

Backend Monitoring
Monitor Remote Services
Configure Custom Exit Points

Resolve Unknown0 Database Backend Name

Database Backends Named "Unknown0"
To enable database naming for your backend

Certain database connection strings cause ODP.NET database backends to appear with the label
"Unknown0". This topic provides instructions on how to configure the App Agent for .NET to detect
the database name. For general information on database backend naming, see ADO.NET Exit

.Points

Database Backends Named "Unknown0"

The default database backend detection mechanism for the App Agent for .NET sometimes
identifies an ODP.NET database as "Unknown0" based upon the connection string. If this is the
case with your business application, you may observe one of the following:

The backend displays the label "Unknown0" in the flow map:

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points

Copyright © AppDynamics 2012-2014 Page 87

1.

2.

The AgentLog.txt references an incompatible connection string:

2014-03-26 11:05:08.8272 4716 w3wp 2 10 Warn ADOUtils ADO.NET backend:
Unknown0 is using incompatible connection string: User Id=MYUSER;Data
Source=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=
54.235.245.21)(PORT=1521))(CONNECT_DATA=(SID=XE)))

For locations of the agent logs, see .App Agent for .NET log files

The following is an example connection string that produces the "Unknown0" name:

string CONNECTION_STRING = "User Id=MYUSER;Password=welcome1;Data
Source=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=
54.235.245.21)(PORT=1521))(CONNECT_DATA=(SID=XE)));";

To enable database naming for your backend

Register the node property.ado-new-resolvers

For instructions on how to set a node property, see .App Agent Node Properties
: ado-new-resolversName

: Enable database detection and naming for ODP.NET backends labeledDescription
"Unknown0".

: BooleanType
: TrueValue

After configuration the agent rediscovers the backend with the correct name.

The default value is False.

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Directory+Structure#AppAgentfor.NETDirectoryStructure-Logfiles
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 88

2. Optionally delete the old database backend.

HTTP Exit Points for .NET

Automatic Discovery and Default Naming
HTTP Configurable Properties
Changing the Default HTTP Automatic Discovery and Naming
Learn More

This topic explains HTTP exit point configuration for .NET. To review general information about
monitoring databases and remote services (collectively known as backends) and for an overview
of backend configuration see .Backend Monitoring

Automatic Discovery and Default Naming

By default, AppDynamics automatically detects and identifies HTTP exit points (backends) that
use the Microsoft HTTP client.

The default HTTP automatic discovery rule uses the URL property. From the enabled properties
AppDynamics derives a display name using the URL, for example:

By default, AppDynamics groups backends of the same type together on the application flow map.

HTTP Configurable Properties

You can enable or disable the use of the following properties for HTTP exit points.

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 89

Type Configurable Properties Property Used by Default
in Detection and Naming

HTTP Host No

 Port No

 URL Yes

 Query String No

Changing the Default HTTP Automatic Discovery and Naming

Depending on exactly what you need to monitor, there may be times when you want to change the
default HTTP configuration. Review for examples.HTTP Exit Points (Java)
For configuration procedures, see .Configure Backend Detection for .NET

Learn More

Backend Monitoring
Monitor Remote Services
Configure Custom Exit Points

Web Services Exit Points for .NET

Auto-Discovery and Default Naming
Configurable Properties
Changing the Default WCF Automatic Discovery and Naming
Learn More

This topic explains Web Services exit point configuration for .NET. To review general information
about monitoring databases and remote services (collectively known as backends) and for an
overview of backend configuration see Backend Monitoring.

Auto-Discovery and Default Naming

By default, AppDynamics automatically detects and identifies web services exit points (backends)
when an application uses the Microsoft Web Services client library.

The default web services automatic discovery rule uses the URL property. From the enabled
properties AppDynamics derives a display name using the URL, for example:

http://docs.appdynamics.com/display/PRO14S/HTTP+Exit+Points+for+Java
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points

Copyright © AppDynamics 2012-2014 Page 90

By default, AppDynamics groups multiple backends of the same type together on the application
flow map.

The backend properties for the web services backend can be viewed on the Remote Services
dashboard.

Configurable Properties

Configurable Properties Property Used by Default
in Detection and Naming

Service No

URL Yes

Operation No

Soap Action No

Changing the Default WCF Automatic Discovery and Naming

Depending on exactly what you need to monitor, there may be times when you want to change the
default configuration. In most cases, you can generate the right name and the correct number of
backends to monitor by editing the automatic discovery rule.
For configuration procedures, see .Configure Backend Detection for .NET

Learn More

Copyright © AppDynamics 2012-2014 Page 91

Backend Monitoring
Monitor Remote Services
Configure Custom Exit Points

Configure Custom Exit Points for .NET

Default Backends Discovered by the Agent for .NET
Configure Custom Exit Points for .NET Backends

To create a custom exit point
To split an exit point
To group an exit point
To define custom metrics for a custom exit point
To define transaction snapshot data collected

Learn More

AppDynamics provides default automatic discovery for commonly-used backends. If a backend
used in your environment is not discovered:

Compare the list of default backends.

If the backend is listed, but the agent doesn't discover it, modify the default configuration
OR
If the backend isn't listed, then .configure a custom exit point according to these instructions

Default Backends Discovered by the Agent for .NET

For a list of supported backends see .Remote Service Detection

For instructions on modifying default backend discovery see Configure Backend Detection for
..NET

Configure Custom Exit Points for .NET Backends

Use custom exit points to identify backend types that are not automatically detected, such as file
systems, mainframes, and so on. For example, you can define a custom exit point to monitor the
file system read method. After you have defined a custom exit point, the backend appears on the
flow map with the type-associated icon you selected when you configured the custom exit point.

You define a custom exit point by specifying the class and method used to identify the backend. If
the method is overloaded, you need to add the parameters to identify the method uniquely.

You can restrict the method invocations for which you want AppDynamics to collect metrics by
specifying match conditions for the method. The match conditions can be based on a parameter or
the invoked object.

You can also optionally split the exit point based on a method parameter, the return value, or the
invoked object.

You can also configure custom metrics and transaction snapshot data to collect for the backend.

To create a custom exit point

1. From the left navigation pane, click and select the Configure -> Instrumentation Backend
 tab.Detection

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+.NET#SupportedEnvironmentsandVersionsfor.NET-RemoteServiceDetection
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+.NET#SupportedEnvironmentsandVersionsfor.NET-RemoteServiceDetection

Copyright © AppDynamics 2012-2014 Page 92

2. Select the application or tier for which you are configuring the custom exit point.

3. Ensure is selected.Use Custom Configuration for this Tier
Backend detection configuration is applied on a hierarchical inheritance model. See Hierarchical

.Configuration Model

4. Scroll down to and click (the + icon).Custom Exit Points Add

5. In the window, click the tab if it is not selected.Create Custom Exit Point Identification

6. Enter a name for the exit point. This is the name that identifies the backend.

7. Select the type of backend from the drop-down menu.Type

This field controls the icon and name that appears on the flow maps and dashboards. Some of the
values are shown in this screen shot:

If the type is not listed, you can check and enter a string to be used as the name onUse Custom
the dashboards.

8. Configure the class and method name that identify the custom exit point.
If the method is overloaded, check the Overloaded check box and add the parameters.

http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model

Copyright © AppDynamics 2012-2014 Page 93

9. If you want to restrict metric collection based on a set of criteria that are evaluated at runtime,
click and define the match condition(s).Add Match Condition
For example, you may want to collect data only if the value of a specific method parameter
contains a certain value.

10. Click .Save

The following screenshot shows a custom exit point for a Cache type backend. This exit point is
defined on the getAll() method of the specified class. The exit point appears in flow maps as an
unresolved backend named CoherenceGetAll.

To split an exit point

1. In the Backend Detection configuration window, click .Add

2. Enter a display name for the split exit point.

3. Specify the source of the data (parameter, return value, or invoked object).

4. Specify the operation to invoke on the source of the data: or (Use toString() Use Getter Chain
for complex objects).

5. Click .Save

The following example shows a split configuration of the previously created CoherenceGetAll exit
point based on the getCacheName() method of the invoked object.

Copyright © AppDynamics 2012-2014 Page 94

To group an exit point

You can group methods as a single exit point if the methods point to the same key.

For example, ACME Online has an exit point for NamedCache.getAll. This exit point has a split
configuration of getCacheName() on the invoked object as illustrated in the previous screen shot.

Suppose we also define an exit point for NamedCache.entrySet. This is another exit point, but it
has the split configuration that has getCacheName() method of the invoked object.

Copyright © AppDynamics 2012-2014 Page 95

If the getAll() and the entrySet() methods point to the same cache name, they will point to the
same backend.

Matching name-value pairs identify the back-end. In this case, only one key, the cache name, has
to match. So, here both exit points have the same name for the cache and they resolve to the
same backend.

To define custom metrics for a custom exit point

Custom metrics are collected in addition to the standard metrics.

The result of the data collected from the method invocation must be an integer value, which is
either averaged or added per minute, depending on your data roll-up selection.

To configure custom business metrics that can be generated from the Java method invocation:

1. Click the tab.Custom Metrics

2. Click .Add

3. In the window type a name for the metric.Add Custom Metric

Copyright © AppDynamics 2012-2014 Page 96

4. Select to specify the source of the metric data.Collect Data From

5. Select to specify how the metric data is processed.Operation on Method Parameter

6. Select how the data should be rolled up (average or sum) from the Data Rollup drop-down
menu.

7. Click .Create Custom Metric

To define transaction snapshot data collected

1. Click the tab.Snapshot Data

2. Click .Add

3. In the Add Snapshot Data window, enter a display name for the snapshot data.

4. Select the Collect Data From radio button to specify the source of the snapshot data.

5. Select the Operation on Method Parameter to specify how the snapshot data is processed.

5. Click .Save

Learn More

Backend Monitoring
Monitor Remote Services
Monitor Databases

Configure Business Transaction Detection for .NET

.NET Entry Points
To create custom match rules for .NET entry points

Learn More

This topic introduces .NET entry points and the way that they are used in business transaction
detection. If the auto-discovered entry points don't include all your critical business transactions,
use custom match rules to customize entry point discovery.

.NET Entry Points

AppDynamics detects entry points in the following places:

On , the method or operation that marks the beginning of a businessoriginating tiers
transaction is an entry point. In most cases, this type of entry point maps to a user request
or action such as "View/Cart". Entry points on originating tiers define the business
transaction name.

On , entry points correlate to incoming http calls, web service requests,downstream tiers
and other communications from instrumented tiers.

The App Agent for .NET (agent) automatically detects entry points for the frameworks listed as aut
. See .omatically discovered business transactions Supported Environments and Versions (.NET)

If the agent detects an entry point on the originating tier, it registers a business transaction with the

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Monitor+Databases
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+.NET#SupportedEnvironmentsandVersionsfor.NET-AutomaticallyDiscoveredBusinessTransactions
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+.NET#SupportedEnvironmentsandVersionsfor.NET-AutomaticallyDiscoveredBusinessTransactions
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+.NET#SupportedEnvironmentsandVersionsfor.NET-AutomaticallyDiscoveredBusinessTransactions

Copyright © AppDynamics 2012-2014 Page 97

Controller. The Controller displays the business transaction in the . If anBusiness Transactions List
entry point correlates to an upstream exit point, such as an exiting service call, the agent includes
it as part of the existing business transaction.

If you need to monitor transactions not automatically discovered by the App Agent for .NET, you
can customize entry point detection. See to learn howOrganizing Traffic as Business Transactions
to plan your business transactions. After you have identified the critical business transactions for
your application, create custom match rules for them to enable transaction detection.

To create custom match rules for .NET entry points

1. Click .Configure > Instrumentation > Transaction Detection

2. Click the tab..NET - Transaction Detection

3. From the list at the left, click either:Select Application or Tier

an application, to configure transaction detection for all tiers in a business application.

a tier, to configure transaction detection at the tier level. At the tier level click Use Custom
. AppDynamics copies the application configuration to the tierConfiguration for this Tier

level so that you can modify it for the tier.

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions

Copyright © AppDynamics 2012-2014 Page 98

4. Use the pane to add and remove business transaction match rules.Custom Match Rules
For details on types of .NET entry points and how to setup
custom match rules, see:

POCO (.NET Class/Method) Entry Points
ASP.NET Entry Points

Learn More

Web Entry Points
Configure Business Transaction Detection
Organizing Traffic as Business Transactions

POCO Entry Points

Defining a POCO Entry Point
Discovery of POCO Transactions

To specify a POCO custom match rule
POCO Transaction as a Background Task

Learn More

Some applications use frameworks other than ones the App Agent for .NET auto-detects. This is
frequently the case with Windows services and standalone applications. AppDynamics lets you
specify entry points using custom match rules for Plain Old CLR Objects (POCOs). Once you've
defined POCOs, we measure performance data for POCO transactions the same as for other
transactions.

http://docs.appdynamics.com/display/PRO14S/Web+Entry+Points
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions

Copyright © AppDynamics 2012-2014 Page 99

Define the custom match rule on the .NET class/method that is the most appropriate entry point for
the business transaction (BT). Someone who is familiar with your application code should help
make this determination.

Defining a POCO Entry Point

On an originating tier, a POCO entry point is the method that starts the BT. If the POCO entry
point is on a downstream tier, it may correlate to an upstream exit point. When defining a POCO
entry point, it is important to choose a method that begins and ends every time the BT executes.
For more on entry points, see .Business Transaction Monitoring

Good candidates for POCO entry points include the following:

A timer in a Windows service that executes a database call to check for new records to
process. For example, an order processing system that periodically checks for new orders in
the system.
A loop in a standalone application that batch processes records via a web service call. For
example, an expense reporting system that loops through approved expenses to submit
them for reimbursement.
A method in a web application that executes every time a client connects. For example,
consider the method execution sequence:

using System.Net;
using System.Net.Sockets;
using System.Threading.Tasks;

namespace MyService
{
class MyProgram
{
 static void Main(string[] args)
 {
 TcpListener myList = new TcpListener(IPAddress.Parse("127.0.0.1"),
8000);
 using (Socket s = myList.AcceptSocket())
 Task.Factory.StartNew(DoWork, s);
 }
 static void DoWork<Socket>(Socket s)
 {
 // ...
 }
}
}

The method is the blocking method that accepts a job and invokes it. The AcceptSocket() MyP
 method is the unit of work because it executes every time a client calls therogram.DoWork()

business transaction and it finishes at the same time as the business transaction. This makes DoW
 a good POCO entry point.ork()

Discovery of POCO Transactions

http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Monitoring

Copyright © AppDynamics 2012-2014 Page 100

1.
2.

3.

4.
5.

6.

By default, once you configure a custom match rule for a POCO entry point, the App Agent for
.NET detects and displays it in the . AppDynamics names the BT for theBusiness Transactions List
name of the custom match rule. For more information, see Configure Business Transaction

.Detection

To specify a POCO custom match rule

To set up a POCO entry point, define a custom match rule for a .NET Class/Method.

For steps to access the pane, see Custom Match Rules To create custom match rules for .NET
.entry points

In the pane, click the plus symbol () to add an entry point.Custom Match Rules +
Click in the dropdown list, then click ..NET Class/Method Next

Name the .New Business Transaction Match Rule
AppDynamics uses the rule to name the BT.Name
The Controller enables the rule by default. Disable it later if needed.
The POCO is a foreground task, to configure it as a background task, see POCO

.Transaction as a Background Task
In the tab, specify the criteria.Transaction Match Criteria Match Classes
Specify the Method Name match criteria.

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection+for+.NET#ConfigureBusinessTransactionDetectionfor.NET-Tocreatecustommatchrulesfor.NETentrypoints
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection+for+.NET#ConfigureBusinessTransactionDetectionfor.NET-Tocreatecustommatchrulesfor.NETentrypoints

Copyright © AppDynamics 2012-2014 Page 101

6.

7.

8.

Click . If you are configuring at the application level, click Save Configure all Tiers to use
.this Configuration

Click OK to the notification message Instrumentation changes require restart.
After you save the rule, it appears in the list. The business applicationCustom Match Rule
or tier you customized displays a green check in the pane.Select Application or Tier

Wait one minute and restart the CLR/application.

The next time the POCO method executes, the agent detects it and registers the entry point.
If the entry point is on an originating tier, the Controller displays it as a business transaction in
the .Business Transactions List

The agent identifies all the qualifying transactions using the custom match rule. In some
situations you may need to further refine the discovery rules. Use the splitting options on the T

 tab.ransaction Splitting

POCO Transaction as a Background Task

Click the check box in the window toBackground Task Business Transaction Match Rule
indicate that a POCO transaction runs in the background.

When a request runs as a background task, AppDynamics reports only Business Transaction
metrics for the request. It does not aggregate response time and call metrics at the tier and
application levels for background tasks. This prevents background tasks from distorting baselines
for the business application. Also, you can set a separate set of thresholds for background tasks.
See .Background Task Monitoring

Learn More

Background Task Monitoring
Configure Business Transaction Detection
Business Transactions List

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Background+Task+Monitoring
http://docs.appdynamics.com/display/PRO14S/Background+Task+Monitoring
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List

Copyright © AppDynamics 2012-2014 Page 102

ASP.NET Entry Points

Default Automatic Naming for ASP.NET Transactions
Customize the Automatic Naming Scheme

To modify automatic naming
Identify Transactions Using URI Segments

To name transactions using all, first, or last URI segments
To use specific URI segments in transaction names

Identify Transactions Using Headers, Cookies, and Other Parts of HTTP Requests
To use HTTP parameter values in transaction names
To use a header value in transaction names
To use a cookie value in transaction names
To use a session attribute value in transaction names
To use the request method in Transaction names
To use the request host in Transaction names
To use the request originating address in Transaction names
To use a custom expression on the HttpRequest

Custom Match Rules for ASP.NET Transactions
To create an ASP.NET custom match rule
To split custom ASP.NET transactions

Learn More

AppDynamics automatically detects entry points for client requests to ASP.NET applications. If the
request occurs on an , the method or operation marks the beginning of a businessoriginating tier
transaction and defines the transaction name. In most cases, this type of entry point maps to a
user request or action such as "Cart/Checkout". AppDynamics allows you to configure transaction
naming based upon the ASP.NET request.

Default Automatic Naming for ASP.NET Transactions

By default, the AppDynamics auto-detection naming scheme identifies all ASP.NET transactions
using the first two segments of the URI.

For example, the following URI represents the checkout operation in an online store:

http://mydotnetsite.com/Cart/Checkout

AppDynamics automatically names the transaction:

/Cart/Checkout

For another example, the following URI represents a funds transfer operation in an online bank:

http://webbank.mybank.com/Account/Transferfunds/NorthernCalifornia

AppDynamics automatically names the transaction:

/Account/Transferfunds

Customize the Automatic Naming Scheme

Copyright © AppDynamics 2012-2014 Page 103

1.

2.

3.

4.

5.

6.

The AppDynamics auto-detected transaction names might not be optimal for your users. You can
configure the naming scheme as follows:

Identify transactions using URI segments
Identify transactions using headers, cookies, and other parts of HTTP requests

To modify automatic naming

Click .Configure > Instrumentation > Transaction Detection

Click the tab..NET - Transaction Detection

From the list at the left, click either:Select Application or Tier
an application to configure transaction detection for all tiers in a business application.
a tier. At the tier level click . AppDynamicsUse Custom Configuration for this Tier
copies the application configuration to the tier level so that you can modify it for the
tier.

If necessary, click under Transaction Monitoring and Enabled Discover Transactions
.automatically for ASP.NET requests

 You can configure naming with Discover Transactions automatically for ASP.NET
requests disabled, but the agent doesn't discover ASP.NET transactions.

Click for the ASP.NET type in the in the Entry Points panel.Configure Naming

Change the naming scheme in the ASP.NET Transaction Naming Configuration window and
click .Save

The following sections provide examples to help you decide how to configure the naming scheme.

Identify Transactions Using URI Segments

AppDynamics offers the following options to automatically name ASP.NET transactions based
upon the URI:

 Use all, first, or last URI segments
Use specific URI segments

To name transactions using all, first, or last URI segments

 Consider the following URL that represents the checkout operation in an online store:

thttp://mydotnetsite.com/Web/Store/Checkou

The first two segments of the URI don't provide a significant name for the business transaction:

/Web/Store

Identify a more meaningful name using one of the following options:

Click to identify the transaction by all URI segments. For example:Use the full URI

Copyright © AppDynamics 2012-2014 Page 104

1.

2.

3.

4.

5.

/Web/Store/Checkout

Click or segments to use two contiguous segments at theUse the first Use the last n
beginning or end of the URI, where is the number of segments.n

 For example, to identify the checkout transaction using the last two segments of the URI:

 /Store/Checkout

If you need more flexibility, such as using non-contiguous segments in the name, click Nam
 and specify the segments withe Transactions dynamically using part of the requests

the option.Use URI segments in Transaction names

To use specific URI segments in transaction names

You can choose specific URI segments to use in the transaction name. This enables you to skip
URI segments or use non-contiguous segments in the naming scheme.

Click .Use a part of the URI

Enter the number of first or last segments to use.

Click Name Transactions dynamically using part of the request.

Click .Use URI segment(s) in Transaction names

Enter the segment numbers separated by commas.

For example the following URL represents the checkout transaction requested by a
customer with ID 1234:

http://mydotnetsite.com/Store/cust1234/Checkout

The checkout transaction is the same regardless of the customer, so it makes sense to
name the transaction based upon the first and third segments of the URI.

Copyright © AppDynamics 2012-2014 Page 105

1.

2.

AppDynamics names the transaction:

/Store/Checkout

Identify Transactions Using Headers, Cookies, and Other Parts of HTTP Requests

You can also name ASP.NET transactions using parameters, headers, cookies, and other parts of
HTTP requests.

To identify all your ASP.NET transactions using particular parts of the HTTP request, use the
Name option.Transactions dynamically using part of the request

 Carefully consider your naming configuration choices. If you use a value such as the request
originating address and you have many clients accessing your application, you may see the All

.Other Traffic Business Transaction

To use HTTP parameter values in transaction names

Set the URI identification option.

Click and enter the . Use a parameter value in Transaction names Parameter Name

For example, consider the following URL:

http://mydotnetsite.com/Store/Inventory?category=electronics

AppDynamics names the transaction to include the category parameter value:

.electronics/Store/Inventory

http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction
http://mydotnetsite.com/Store/Inventory?category=electronics

Copyright © AppDynamics 2012-2014 Page 106

1.

2.

1.

2.

1.

2.

1.

2.

1.

2.

1.

To use a header value in transaction names

Set the URI identification option.

Click and enter aUse header value in transaction names Header Name.
For example, consider a site that uses the custom header "Version", AppDynamics names
transactions with the header value as follows:

.v2.5/Store/Inventory

To use a cookie value in transaction names

Set the URI identification option.

Click and enter the .Use a cookie value in Transaction names Cookie Name
For example, a website tracks a user's loyalty status in a cookie. Set the Cookie Name to
"loyalty". AppDynamics names transactions for the loyalty cookie value:

.Status=Gold/Store/Inventory

To use a session attribute value in transaction names

Set the URI identification option.

Click and enter the Use a session attribute in Transaction names Session Attribute Key
.
For example, a website stores a customer's region in the session property. Set the Session
Attribute name to "region". AppDynamics names transactions for the region session attribute
value:

 /Store/Inventory.NorthAmerica

To use the request method in Transaction names

Set the URI identification option.

Click .Use the request method (GET/POST/PUT) in Transaction names
AppDynamics names transactions for the request method. For example:

.GET/Store/Inventory

To use the request host in Transaction names

Set the URI identification option.

Click .Use the request host in Transaction names
AppDynamics names transactions for the ip address of the request host. For example:

./Store/Inventory 192.0.2.0

To use the request originating address in Transaction names

Copyright © AppDynamics 2012-2014 Page 107

1.

2.

1.
2.

3.

1.

2.

Set the URI identification option.

Click .Use the request originating address in Transaction names
AppDynamics names transactions for the ip address of the request client. For example:

.192.0.2.10/Store/Inventory

To use a custom expression on the HttpRequest

New in 3.8.4, custom expressions enable you to name transactions using for getter chain(s) HttpR
 properties and methods.equest

Set the URI identification option.
Click Apply a custom expression on HttpRequest and use the result in Transaction

.Names
Enter your custom expression getter chain as follows:

Enclose getter chain(s) inside braces: .${}

Use syntax.getter chain
Use any request attributes or methods.HttpRequest

For example, consider this URL:

 http://mystore.example.com/Store/Inventory-Furniture

The following custom expression uses two getter chains:
The first getter chain fetches the URL, splits it on the dash character ("-"), and uses
the second string in the array.
The second getter chain fetches the property.HttpRequest.UserAgent

The literal dash character "-" separates the two getter chains.

${Url.ToString().Split(Char[]/-).[2]}-${UserAgent}

The result is the following business transaction name:

Furniture-Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like
Gecko

Custom Match Rules for ASP.NET Transactions

Custom match rules provide greater flexibility for transaction naming. When you define a match
rule, AppDynamics uses the rule name for the business transaction name.

For steps to access the Custom Match Rules pane, see To create custom match rules for. NET
.entry points

To create an ASP.NET custom match rule

In the pane, click the plus symbol () to add an entry point.Custom Match Rules +

http://msdn.microsoft.com/en-us/library/system.web.httprequest.aspx
http://msdn.microsoft.com/en-us/library/system.web.httprequest.aspx
http://msdn.microsoft.com/en-us/library/system.web.httprequest.aspx
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection+for+.NET#ConfigureBusinessTransactionDetectionfor.NET-Tocreatecustommatchrulesfor.NETentrypoints
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection+for+.NET#ConfigureBusinessTransactionDetectionfor.NET-Tocreatecustommatchrulesfor.NETentrypoints

Copyright © AppDynamics 2012-2014 Page 108

1.

2.

3.

4.

5.

Click in the dropdown list. Click .ASP.NET Next

 Name the .New Business Transaction Match Rule
AppDynamics uses the rule to name the BT.Name
The Controller enables the rule by default. Disable it later if needed.
Set the for the match rule. AppDynamics applies higher priority rules first.Priority

Set one or more of the following match criteria. When AppDynamics detects a requests
matching your specified criteria, it identifies the request using your custom name.

: Match on the HTTP request method, GET, POST, PUT or DELETE.Method

URI: Set the conditions to match for the URI.
For rules on regular expressions for .NET, see ..NET Framework Regular Expressions
Optionally click the gear icon to set a NOT condition.
You must set an URI match condition in order to use .transaction splitting

: Match on HTTP parameter existence or a specific HTTP parameterHTTP Parameter
value.

: Match on a specific HTTP header's (parameter's) existence or a specific HTTPHeader
header value.

: Match on the server host name. Hostname Optionally click the gear icon to set a NOT
condition.

: Match on the server port number. Optionally click the gear icon to set a NOT condition.Port

: Match on the ASP.NET class name. Optionally click the gear icon to set aClass Name
NOT condition.

Match on cookie existence or a specific a specific cookie value.Cookie:

Click .Save

The rule appears in the Custom Match Rule list. The business application or tier you
customized displays a green check in the Select Application or Tier pane.
After the agent receives the updated configuration, it discovers the new business transaction
and displays it in the Business Transactions List.

WIth automatic discovery for ASP.NET transactions enabled, configuring the match
on GET or POST causes the the agent to discover both GET and POST requests. If
you only want either GET or POST requests for the transaction, consider the
following options:

Disable automatic discovery for ASP.NET transactions.
Create an exclude rule for the method you don’t want: GET or POST.

http://msdn.microsoft.com/en-us/library/hs600312(v=vs.110).aspx
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List

Copyright © AppDynamics 2012-2014 Page 109

5.

1.

2.

3.

To split custom ASP.NET transactions

AppDynamics lets you further refine ASP.NET custom transaction names using transaction
. See .splitting Transaction Splitting for Dynamic Discovery

Create a custom match rule. To use transaction splitting, you must specify URI match
criteria.

Click .Split Transactions Using Request Data

Click the splitting option to use.

The transaction splitting options work the same as the methods described in the previous
sections:
Identify transactions using URI segments
Identify Transactions Using Headers, Cookies, and Other Parts of HTTP Requests

For example, consider the following URL:
http://mydotnetsite.com/Store/Inventory?category=electronics

Configure the custom match rule to match on the "URI contains Inventory".

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-TransactionSplittingforDynamicDiscovery
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-TransactionSplittingforDynamicDiscovery
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-TransactionSplittingforDynamicDiscovery

Copyright © AppDynamics 2012-2014 Page 110

3.

4.

Split the transaction on the category parameter.

Click .Save
After the agent receives the updated configuration, it discovers the new business transaction
and displays it in the Business Transactions List.

Learn More

Configure Business Transaction Detection for .NET

Web Entry Points

Configure Business Transaction Detection

Import and Export Transaction Detection Configuration for .NET

Import and Export Auto-Detected Entry Point Configurations
Export guidelines
Import guidelines
To import or export the configurations for all the auto-detected entry-points to or from
an application
To import or export the configuration for a single auto-detected entry point type to or
from an application

Entry point type names
To import or export the configurations for all the auto-detected entry-points to or from

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Web+Entry+Points
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 111

a tier
To import or export the configuration for a single auto-detected entry point type to or
from a tier

Import and Export Custom Match Rules
To import or export a single custom match rule to or from an application
To import or export a single custom match rule to or from a tier

Import and Export Exclude Rules
To import or export a single exclude rule to or from an application
To import or export a single exclude rule to or from a tier

Overwrite Parameter
Learn More

New in 3.8.4, AppDynamics lets you migrate transaction detection configurations for .NET entry
points from one application to another using a REST API. Use the API to copy transaction
detection configurations rather than manually re-configuring multiple applications in the Controller.

Import and Export Auto-Detected Entry Point Configurations

You can import and export all your entry point configurations or one entry point configuration in a
single request. Lists of multiple entry point names are not supported. Import to or export from
application-level configuration and tier-level configuration as follows:

auto-detected entry point configurations
custom match rules
exclude rules

Export guidelines

Follow these rules when exporting entry point configurations:

Use the HTTP GET method.
Encode the URI using UTF-8 URL encoding.
The base URI is the source application and, optionally, the source tier for your configuration
export.

http://<controller host>:<controller
port>/controller/transactiondetection/<application
name>/<optional tier name>

The Controller exports the configurations to an XML file. If necessary, you can edit the XML
file before you import it.
For example, if you export the all the auto-detected entry points but don't want to import
them all, delete the ones you do not want from the file before import.

Import guidelines

Follow these rules when importing entry point configurations:

Export the auto-detected entry point configuration, custom match rule, or exclude rule from
the Controller.

Copyright © AppDynamics 2012-2014 Page 112

 You may manually create the XML, but that option is more difficult.
Use the HTTP POST method.
Encode the URI using UTF-8 URL encoding.
The base URI is the destination application and, optionally, the destination tier for your
configuration import.

http://<controller host>:<controller
port>/controller/transactiondetection/<application
name>/<optional tier name>

Include the XML configuration as a file attachment to the request.
To overwrite an existing configuration with the same name see .Overwrite Parameter
A successful import request returns HTTP status code 200.

To import or export the configurations for all the auto-detected entry-points to or from an application

http://<controller host>:<controller
port>/controller/transactiondetection/<application name>/auto

exports all the auto-detected entry point types for all agents: ASP.NET, Java, PHP, NodeJS, etc.

For example:

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/auto

produces the output in .auto_all.xml

To import or export the configuration for a single auto-detected entry point type to or from an application

http://<controller-host>:<controller-port>/controller/transactiondetecti
on/<application name>/auto/<entry point type name>

Entry point types names are case insensitive.

In this example the customized ASP.NET naming configuration uses one segment of the URI and
the "destination" parameter, the API

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/auto/aspdotnet

produces the output in .auto_aspdotnet.xml

Entry point type names

When you import or export a specific entry point type, the REST API requires the following entry
point type names:

ASP.NET: AspDotNet
 Web Service: DotNetWebService

http://docs.appdynamics.com/download/attachments/23462304/auto_all.xml?version=2&modificationDate=1404164853000&api=v2
http://docs.appdynamics.com/download/attachments/23462304/auto_aspdotnet.xml?version=2&modificationDate=1404164988000&api=v2

Copyright © AppDynamics 2012-2014 Page 113

 WCF: WCF
 .NET Class / Method: POCO

 Message Queue: DotNetJms
 .NET Remoting: DotNetRemoting

To import or export the configurations for all the auto-detected entry-points to or from a tier

http://<controller-host>:<controller-port>/controller/transactiondetecti
on/<application name>/<tier name>/auto

For example:

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/TravelSearch+Server/auto/

The tier output is the same as for an application. See .auto_all.xml

To import or export the configuration for a single auto-detected entry point type to or from a tier

http://<controller host>:<controller
port>/controller/transactiondetection/<application name>/<tier
name>/auto/<entry point type name>

For example if you disabled Web Services for the TravelSearch Server tier, the API

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/TravelSearch+Server/auto/DotNetWebService

produces the output in .auto_webservice.xml

Import and Export Custom Match Rules

To import or export a single custom match rule to or from an application

http://<controller host>:<controller
port>/controller/transactiondetection/<application name> <entry/custom/
point type name>/<custom rule name>

For example to export a POCO, the API

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/custom/POCO/My+POCO

produces the output in .custom_poco.xml

To import or export a single custom match rule to or from a tier

http://<controller host>:<controller
port>/controller/transactiondetection/<application name>/<tier name>/cus

http://docs.appdynamics.com/download/attachments/23462304/auto_all.xml?version=2&modificationDate=1404164853000&api=v2
http://docs.appdynamics.com/download/attachments/23462304/auto_webservice.xml?version=2&modificationDate=1404165117000&api=v2
http://docs.appdynamics.com/download/attachments/23462304/custom_poco.xml?version=2&modificationDate=1404167470000&api=v2

Copyright © AppDynamics 2012-2014 Page 114

<entry point type name>/<custom rule name>tom/

For example:

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/TravelSearch+Server/custom/AspDotNet/My+ASP.NET+Tra
nsaction

produces the output in .custom_aspdotnet.xml

Import and Export Exclude Rules

To import or export a single exclude rule to or from an application

http://<controller host>:<controller
port>/controller/transactiondetection/<application name>/exclude/<entry
point type name>/<exclude rule name>

For example, to export an exclude rule for a specific service, the API

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/exclude/DotNetWebService/My+Web+Service+Exclude+Rule

produces the output in .exclude_webservice.xml

To import or export a single exclude rule to or from a tier

http://<controller host>:<controller
port>/controller/transactiondetection/<application name>/<tier
name>/exclude/<entry point type name>/<exclude rule name>

For example:

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/TravelSearch+Server/exclude/DotNetWebService/My+Web
+Service+Exclude+Rule

The tier output is the same as for an application. See .exclude_webservice.xml

Overwrite Parameter

Use the overwrite parameter to overwrite a configuration of the same name. Without this
parameter, if the import encounters a configuration for a component of the same name, the
request will fail.

For example, to import a configuration for a POCO custom match rule named "My POCO" to an
application that has an existing "My POCO" custom match rule use:

http://docs.appdynamics.com/download/attachments/23462304/custom_aspdotnet.xml?version=2&modificationDate=1404166194000&api=v2
http://docs.appdynamics.com/download/attachments/23462304/exclude_webservice.xml?version=2&modificationDate=1404167089000&api=v2
http://docs.appdynamics.com/download/attachments/23462304/exclude_webservice.xml?version=2&modificationDate=1404167089000&api=v2

Copyright © AppDynamics 2012-2014 Page 115

http://appdcontroller.example.com/controller/transactiondetection/Ho
wdy+World+Travel/custom/POCO/My+POCO?overwrite=true

The default is overwrite=false.

Learn More

Configure Business Transaction Detection
Use the AppDynamics REST API

Identify MVC Transactions by Controller and Action

Identifying MVC Transactions by Controller and Action
To identify ASP.NET MVC transactions by Controller/Action
Business Transaction Naming Convention

Learn More

You can configure the agent to identify transactions by MVC Controller/Action instead of the
default naming by URI. For general information on organizing and naming business transactions,
see .Organizing Traffic as Business Transactions

Identifying MVC Transactions by Controller and Action

By default the App Agent for .NET (agent) identifies ASP.NET MVC business transactions by the
request URL or server URI.

In cases where an application accepts numerous client URLs for a single MVC controller and
action, naming business transactions with the client URL can cause several issues including the
following:

The number of business transactions exceeds the limits. See .Business Transaction Limits
Most requests wind up in "All other traffic". See .All Other Traffic Business Transaction
Requests per minute per business transaction is inconsistent.

For example, consider a MVC application that lists store locations. City-specific URLs list the
locations for a city:

http://myapp.mycompany.com/Bellevue

The business transaction name for this URL defaults to . Each request for a unique city/Bellevue
generates a business transactions. None of the URIs contain common elements that you can use
to configure business transaction names.

http://docs.appdynamics.com/pages/createpage.action?spaceKey=STAGE&title=Configure+Business+Transaction+Detection
http://docs.appdynamics.com/pages/createpage.action?spaceKey=STAGE&title=Use+the+AppDynamics+REST+API
http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions
http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions#OrganizingTrafficasBusinessTransactions-TheBusinessTransactionLimit
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction

Copyright © AppDynamics 2012-2014 Page 116

In the web application, all city location searches, such as /Bellevue, map to the action ofResults
the controller. After you configure the agent to name transactions by controller and action,Search
the agent identifies the business transaction as .Search/Results

The Search/Results business transaction combines search requests for all cities into one
transaction.

To identify ASP.NET MVC transactions by Controller/Action

To configure the agent to identify MVC transactions as Controller/Action, register the aspdotnet-m
 node property. The node property works for MVC 3, MVC 4 andvc-naming-controlleraction

WebAPI transactions.

For instructions on how to set a node property, see .App Agent Node Properties

Name: aspdotnet-mvc-naming-controlleraction
: Identfy ASP.NET MVC Business Transactions as Controller/Action.Description

: BooleanType
: TrueValue

 The default value is .False

After the agent registers traffic with a business transaction named for the Controller/Action and
after traffic to the old business transactions named for the client URL diminishes, delete the old
business transactions.

Business Transaction Naming Convention

New in 3.8.4, if you use Areas to organize your MVC application, the agent includes the Area
name in the business transaction name:

/Area name/Controller name/Action name

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 117

For example, if your travel application has separate Areas for hotel, airfare, and car rentals:

/Hotel/Search/Results

Otherwise the agent names the transaction as follows:

/Controller name/Action name

Learn More

Business Transaction Limit
All Other Traffic Business Transaction
App Agent Node Properties
Configure Business Transaction Detection
ASP.NET Routing

Configure Application Domain Monitoring

Overview
Single Application Domain
Multiple Application Domains

Configure Monitoring for Multiple Application Domains
To configure Application Domain instrumentation.
Sample Standalone Application configuration with multiple AppDomains

Learn More

You can configure monitoring for ASP.NET applications with multiple Application Domains
(AppDomains). This topic assumes you have a working knowledge of AppDomains and that you
are familiar with the AppDomain implementation in your application.

This topic does not cover the System Domain, Shared Domain, or DefaultDomain AppDomains the
CLR instantiates before it executes the managed code. If your standalone application runs in the
DefaultDomain, see .Instrument the DefaultDomain for Standalone Applications

Overview

Windows uses processes to manage security and performance isolation between running
applications. Process isolation ensures one application's running code doesn't interfere with
another application. However, for applications that share data, making calls between Windows
processes can introduce complications and performance issues. AppDomains enable developers
to create several applications that run inside a single process but maintain application isolation.

Single Application Domain

In the case of a single application running inside its own process, the runtime host typically
manages the AppDomain. The application executable and the AppDomain have the same name.
The App Agent for .NET (agent) installs itself inside the single AppDomain and creates a node for
the application.

http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions#OrganizingTrafficasBusinessTransactions-TheBusinessTransactionLimit
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://msdn.microsoft.com/en-us/library/cc668201.aspx

Copyright © AppDynamics 2012-2014 Page 118

Multiple Application Domains

When developers include multiple AppDomains in an application, all the AppDomains run inside a
single process. The application executable may have the same name as one AppDomain, but
there are other, uniquely named AppDomains. By default, the agent installs itself inside all the
AppDomains and creates nodes for them.

Configure Monitoring for Multiple Application Domains

Copyright © AppDynamics 2012-2014 Page 119

If the application you monitor contains multiple AppDomains, the App Agent for .NET automatically
instruments each AppDomain and creates a node. , you can configure the AppNew in 3.7.12
Agent for .NET to instrument only the AppDomains you specify. This is useful to exclude
AppDomains you don't want to monitor and to limit the number of nodes in a tier.

You can configure application domain monitoring for:

Windows Services
Standalone Applications

To configure Application Domain instrumentation.

Configure all instrumentation settings for the App Agent for .NET in the config.xml file. See Where
.to Configure App Agent Properties

1. Identify the name of the AppDomains you want to instrument.

2. Launch a text editor as administrator.

3. Edit the config.xml file as an administrator. See Where to Configure App Agent Properties.

4. Find the element that corresponds to your application with multiple AppDomains:

 element: Windows Service <windows-service name="MyWindowsService">

If you have already instrumented your application, you can see the AppDomain names in
the Node Dashboard.

Click the node in the left navigation pane, then click . See .CLR Node Dashboard

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WindowsServiceElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-StandaloneApplicationElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/Node+Dashboard

Copyright © AppDynamics 2012-2014 Page 120

 element: Standalone Application <standalone-application
executable="MyWindowsApplication.exe">

5. Add the attribute to the element.app-domain-name

For example, to instrument the MyApp.exe AppDomain for the MyApp.exe standalone application:

<standalone-application executable="MyApp.exe" app-domain-name="MyApp.exe">
 <tier name="StandaloneApplication Tier"/>
</standalone-application>

6. To instrument additional AppDomains, add an element for each AppDomain as if they were
separate applications.

For example, to instrument MyAppDomain1 in MyApp.exe:

<standalone-application executable="MyApp.exe" app-domain-name="MyAppDomain1">
 <tier name="StandaloneApplication Tier"/>
 </standalone-application>

7. Save the config.xml file.

8. Restart the AppDynamics.Agent.Coordinator service.

9. Restart instrumented applications: Windows services or standalone applications.

Sample Standalone Application configuration with multiple AppDomains

This sample config.xml shows the configuration for the application MyApp.exe. Instrumentation
only applies to the AppDomains specified in the config.xml: MyApp.exe and MyAppDomain2.

As soon as you instrument one AppDomain in the config.xml, the agent instruments only
the AppDomains you specify. Other AppDomains are not instrumented.

Copyright © AppDynamics 2012-2014 Page 121

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090" ssl=false">
 <application name="MyDotNetApplication" />
 </controller>
 <machine-agent />
 <app-agents>
 <standalone-applications>
 <standalone-application executable="MyApp.exe"
app-domain-name=""MyApp.exe">
 <tier name="StandaloneApplication Tier"/>
 </standalone-application>
 <standalone-application executable="MyApp.exe"
app-domain-name=""MyAppDomain2">
 <tier name="StandaloneApplication Tier"/>
 </standalone-application>
 </standalone-applications>
 </app-agents>
</appdynamics-agent>

Learn More

Instrument DefaultDomain for Standalone Applications
Application Domains
App Agent for .NET Configuration Properties
Enable the App Agent for .NET for Windows Services

http://msdn.microsoft.com/en-us/library/cxk374d9(v=vs.90).aspx

Copyright © AppDynamics 2012-2014 Page 122

Enable the App Agent for .NET for Standalone Applications

Instrument the DefaultDomain for Standalone Applications

Instrument the DefaultDomain for Standalone Applications
To check if your application runs in the DefaultDomain
To instrument the DefaultDomain

Learn More

This topic provides instructions to identify if your application runs in the .NET DefaultDomain, and,
if so, how to instrument it.

Instrument the DefaultDomain for Standalone Applications

By default, the App Agent for .NET does not instrument the AppDomain. BeforeDefaultDomain
you instrument the DefaultDomain:

Follow the instructions to instrument a .standalone application
Create a for a class/method in the application.POCO entry point

If you complete those steps and still don't see business transactions in the Controller, check if your
managed code runs in the DefaultDomain. If so, you must configure the agent to instrument the
DefaultDomain.

To check if your application runs in the DefaultDomain

If you are unfamiliar with your application's managed code, you can use the agent logs to identify
the AppDomain.

1. Open the agent log:
 Windows Server 2008 and later: %ProgramData%\AppDynamics\DotNetAgent\Logs\Ag
entLog.txt
 Windows Server 2003: %AllUsersProfile%\Application
Data\AppDynamics\DotNetAgent\Logs\AgentLog.txt

2. Search the agent log for "AppDomain".
Few log entries contain "AppDomain" when the agent starts up. Look for an entry by "dllhost" or
your instrumented application similar to the following:

2013-12-16 08:23:02.3120 3068 MYPROGRAM 1 1 Info Configuration
appDomainName=DefaultDomain appDomainId=1 iis-app=null site=null port=null
appPoolId=
2013-12-16 08:23:02.6240 3192 dllhost 1 17 Info ConfigurationManager Not
instrumenting DefaultDomain for pid 3068

In this example MYPROGRAM is the name of the instrumented standalone application. You can
see the name of the AppDomain in the log entry: .appDomainName=DefaultDomain

To instrument the DefaultDomain

Configure all instrumentation settings for the App Agent for .NET in the config.xml file. See Where

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 123

.to Configure App Agent Properties

1. Launch a text editor as administrator.

2. Edit the config.xml file as an administrator. See Where to Configure App Agent Properties.

3. Copy the code block below to a child element of the element. See Standalone Application Sta
:ndalone Application Element

<profiler>
 <instrument-defaultdomain enabled="true"/>
 </profiler>

For example:

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090" ssl="false">
 <application name="My Business Application" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <applications />
 </IIS>
 <standalone-applications>
 <standalone-application executable="MyStandaloneApp.exe">
 <tier name="Standalone Tier" />
 <profiler>
 <instrument-defaultdomain enabled="true"/>
 </profiler>
 </standalone-application>
 </standalone-applications>
 </app-agents>
</appdynamics-agent>

4. Save the config.xml file.

5. Restart the AppDynamics.Agent.Coordinator service.

6. Restart the standalone application for your changes to take effect.

Learn More

Enable the App Agent for .NET for Standalone Applications
POCO Entry Points
App Agent for .NET Configuration Properties

The element must follow the element.Profiler Standalone Application Tier

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-StandaloneApplicationElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-StandaloneApplicationElement

Copyright © AppDynamics 2012-2014 Page 124

Getter Chains in .NET Configurations

Using Getter Chains
Separators in Getter Chains
Getter Chain Examples
Learn More

This topic provides some guidance and examples of the correct syntax for using getter chains in
AppDynamics configurations.

Using Getter Chains

You can use getter chains to:

Configure method invocation data collectors. See .Configure Data Collectors
Define a new business transaction custom match rule that uses a POCO object instance as
the mechanism to name the transaction. See .POCO Entry Points

Note: If a getter chain calls on a method that does a lot of processing, such as making numerous
SQL calls, it can degrade the performance of the application and the App Agent for .NET. Ideally,
use getter chains only with simple gets.

An example of a simple getter would be a method to return a property from a class, such as
GetName().

public class MyUser
{
private String Name {get; set;}
private String Url;
public GetUrl(){
 return this.Url;
 }
}

Separators in Getter Chains

The following special characters are used as separators:

comma (,) for separating parameters
forward slash (/) for separating a type declaration from a value in a parameter
dot (.) for separating the methods and properties in the getter chain

If a slash or a comma character is used in a string parameter, use the backslash (\) escape
character. Except in the case of type / value.

If a literal dot is used in a string parameter, use the backslash escape character before the dot.

Getter Chain Examples

http://docs.appdynamics.com/display/PRO14S/Configure+Data+Collectors

Copyright © AppDynamics 2012-2014 Page 125

Getter chain with integer parameters in the substring method using the forward slash as the
type separator:

GetAddress(appdynamics, sf).Substring(int/0, int/10)

This example returns the first 10 characters of a string. The int parameter types resolve
which overloaded method to call.

Getter chain with various non-string parameter types:

GetAddress(appdynamics, sf).MyMethod(float/0.2, boolean/true,
boolean/false, int/5)

For cases when you specify , you don't need to escape anything after thetype / char
type.

Getter chain with forward slash escaped; escape character needed here for the string
parameter:

GetUrl().Split(char[]//)

This example splits a URL on the forward slash character and returns a string array. The
following examples are more likely.

Getter chain with an array element:

GetUrl().Split(char[]//).[4]

Getter chain with multiple array elements separated by commas:

GetUrl().Split(char[]//).[1,3]

Getter chain retrieves property values, such as the length of an array:

GetUrl().Split(char[]//).Length

Getter chain using backslash to escape the dot in the string parameter;
the call is getParam (a.b.c).

These examples are intended to get you started with the getter chain syntax for
AppDynamics.

Copyright © AppDynamics 2012-2014 Page 126

1.

GetAddress.GetParam(a\.b\.c\.)

In the following getter chain, the first dot requires an escape character because it is in a
string method parameter (inside the parentheses). The second dot does not require an
escape character because it is not in a method parameter (it is outside the parentheses).

GetUser(suze\.smith).GetGroup().GetId()

The following getter chain is from a transaction splitting rule on URIs that use a semicolon
as a delimiter; for example:

/my-webapp/xyz;sessionid=BE7F31CC0235C796BF8C6DF3766A1D00?act=Add&uid=c42ab
7ad-48a7-4353-bb11-0dfeabb798b5

The getter chain splits on the API name, so the resulting split transactions are "API.abc",
API."xyz" and so on.

The call gets the URI using GetUri() and then splits it using the escaped forward slash.
From the resulting array it takes the third entry (as the split treats the first slash as a
separator) and inserts what before the slash (in this case, nothing) into the first entry.
Then it splits this result using the semicolon, getting the first entry of the resulting array,
which in this case contains the API name.

GetUri().Split(char[]//).[2].Split(char[];).[0]

Learn More

Configure Business Transaction Detection
Configure Data Collectors

Enable Monitoring for Windows Performance Counters

Performance Counters and the .NET Machine Agent
To configure additional performance counters for .Net
Sample .NET Machine Agent configuration with additional performance counters

Performance Counters and the .NET Machine Agent

By default, the .NET Machine Agent uses Microsoft Performance Counters to gather and report
.NET metrics. For details on the preconfigured .NET metrics see and .Monitor CLRs Monitor IIS

You can specify additional performance counters to be reported by the .NET Machine Agent.

To configure additional performance counters for .Net

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Configure+Data+Collectors

Copyright © AppDynamics 2012-2014 Page 127

1.
2.
3.

4.

5.
6.

Shut down the AppDynamics.Agent.Coordinator service.
Edit the config.xml file as an administrator. See .Where to Configure App Agent Properties
Add the Performance Counters block as a child of the Machine Agent element.

<perf-counters>
 <perf-counter cat="" name="" instance=""/>
 </perf-counters>

Create a Performance Counter element for each performance counter you want to add.
Use any of the performance counters as specified in Performance Counters in .NET

.Framework
Set the cat attribute to the category of the performance counter.
Set the name attribute to the performance counter name.
Set the instance attribute to the of the performance counter.

 If a particular performance counter has many instances you can specify the following
options:

instance ="*" OR
instance ="all" (This will report the sum of all instances)

For example, to add the performance counter for measuring CPU Idle time(%), add the
following element in the <perf-counters> block:

<perf-counter cat="Processor" name="% Idle Time"
instance="_Total"/>

Save the config.xml.
Start the AppDynamics.Agent.Coordinator service.

Sample .NET Machine Agent configuration with additional performance counters

<machine-agent>
 <!-- Additional machine level Performance Counters -->
 <perf-counters>
 <perf-counter cat="Processor" name="% Idle Time" instance="_Total"/>
 </perf-counters>
</machine-agent>

Configure the .NET Machine Agent

The .NET Machine Agent
Machine Agent Configuration

To configure the .NET Machine Agent
To Configure the .NET Machine Agent without app agents

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://msdn.microsoft.com/en-us/library/w8f5kw2e%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/w8f5kw2e%28v=VS.80%29.aspx

Copyright © AppDynamics 2012-2014 Page 128

1.
2.

1.
2.

3.

Machine Agent Tier
Learn More

This topic provides instructions to configure the .NET Machine Agent that installs automatically
with the App Agent for .NET.

The .NET Machine Agent

The App Agent for .NET includes an embedded .NET Machine Agent that runs as part of the
AppDynamics.Agent.Coordinator service. Among other things, the Machine Agent regularly
gathers system performance data and reports it back to the Controller as metrics.

 Do not confuse the .NET Machine Agent with the Standalone Machine Agent, a Java
application. The Standalone Machine Agent provides the capability to use extensions (plugins,
metric listener, orchestration). See Standalone Machine Agent.

Machine Agent Configuration

The app agent MSI Installer package and App Agent for .NET Configuration Utility automatically
install and configure the .NET Machine Agent to connect to the Controller. The connection
information is the same for the app agent and the .NET Machine agent. See Configure the App

.Agent for .NET

You can customize the .NET Machine Agent to enable additional functionality.

To configure the .NET Machine Agent

If you haven't already, .Install the App Agent for .NET
Customize instrumentation settings for the in the config.xml file.Machine Agent element
See .Where to Configure App Agent Properties

See the following topics for .NET Machine Agent configuration options:

Enable Monitoring for Windows Performance Counters
Enable Thread Correlation for .NET
Enable Correlation for .NET Remoting
Enable Instrumentation for WCF Data Services

To Configure the .NET Machine Agent without app agents

If you haven't already, .Install the App Agent for .NET
Launch the AppDynamics Agent Configuration utility and follow the steps until you reach the
Assign IIS applications to tiers window.
Click for the method of tier generation and assignment and click .Manual Next

http://docs.appdynamics.com/display/PRO14S/Install+the+Standalone+Machine+Agent
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 129

3.

4.

5.

Don't assign any IIS applications to tiers, click .Next

 If you configured any Windows services or standalone applications, manually disable
those agents in the config.xml.

Continue with the remaining steps and click .Done

Monitoring resumes for the .NET Machine Agent only.

Machine Agent Tier

Immediately after you install and configure the App Agent for .NET, the .NET Machine Agent
registers with the Controller and starts reporting performance data.

Frequently the machine agent metrics reach the controller before the app agent has had time to
instrument and register IIS applications, Windows services, or standalone applications. If there are
no application tiers, the machine agent registers as the Machine Agent tier.

Copyright © AppDynamics 2012-2014 Page 130

Once the app agent begins reporting metrics for configured application tiers, the .NET Machine
Agent reports to the application tiers and stops sending data to the Machine Agent tier.

Learn More

Install the App Agent for .NET
Monitor CLRs

Enable Instrumentation for WCF Data Services

To enable instrumentation for WCF Data Services
Learn More

AppDynamics supports instrumentation for WCF Data Services including the WCF RIA Services
for Microsoft LightSwitch.

To enable instrumentation for WCF Data Services

Configure all instrumentation settings for the App Agent for .NET in the config.xml file. See Where
.to Configure App Agent Properties

1. Launch a text editor as administrator.

2. Edit the config.xml file as an administrator. See Where to Configure App Agent Properties.

3. Copy the code block below to a child element of the Machine Agent element. (See Machine
):Agent Element

<instrumentation>
 <instrumentor name="WCFDSEntryInstrumentor" enabled="true" />
 </instrumentation>

For example:

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-WheretoConfigureAppAgentProperties
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+.NET+Configuration+Properties#AppAgentfor.NETConfigurationProperties-MachineAgentElement

Copyright © AppDynamics 2012-2014 Page 131

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
 <machine-agent>
 <!--Enable thread correlation-->
 <instrumentation>
 <instrumentor name="WCFDSEntryInstrumentor" enabled="true" />
 </instrumentation>
 </machine-agent>
...
</appdynamics-agent>

The configuration syntax is .enabled="true"

4. Save the config.xml file.

5. Restart the AppDyanmics.Agent.Coordinator Service.

6. Restart instrumented applications for your changes to take effect.

Learn More

Configure Business Transaction Detection for .NET

App Agent for .NET Configuration Properties

Monitor .NET Applications
Monitor CLRs
Monitor IIS
Monitor Async Transactions for .NET
Monitor Oracle Backends for .NET with AppDynamics for Databases

The .NET embedded machine agent reports hardware metrics such as:

CPU activity
Memory usage
Disk reads and writes
Network traffic

When IIS is installed on the machine, the .NET machine agent also reports IIS, ASP.NET and
ASP.NET Application metrics. See .Monitor IIS

The App Agent for .NET reports CLR metrics, which are also based on MS Performance Counters.
See .Monitor CLRs

If you install the Standalone Machine Agent, which is a Java application, in a .NET environment,
then you can add custom monitors and extensions such as the HTTP listener. See Standalone

 for details.Machine Agent

http://docs.appdynamics.com/display/PRO14S/Configure+Machine+Agents+in+a+.NET+Environment#ConfigureMachineAgentsina.NETEnvironment-TheStandaloneMachineAgent
http://docs.appdynamics.com/display/PRO14S/Configure+Machine+Agents+in+a+.NET+Environment#ConfigureMachineAgentsina.NETEnvironment-TheStandaloneMachineAgent

Copyright © AppDynamics 2012-2014 Page 132

1.

Learn More

Monitor Databases
Monitor Remote Services

Monitor CLRs

CLR Metrics
To access the Node Dashboard
To access the Metric Browser

Alerting for CLR Health
Learn More

AppDynamics uses Microsoft Windows Performance Counters to gather .NET metrics. These
preconfigured CLR metrics can be viewed from the Node Dashboard and in the Metric Browser.

Refer to the Microsoft documentation for more information:

General overview: Performance Counters
ASP.NET Counters: Performance Counters for ASP.NET

CLR Metrics

CLR metrics give insight into how the .NET runtime is performing. The AppDynamics
preconfigured CLR metrics include:

.NET CLR memory usage
Total classes loaded and how many are currently loaded
Garbage collection time spent, and detailed metrics about GC memory pools and caching
Locks and thread usage
Memory heap and non-heap usage, including the large object heap
Percent CPU process usage

To access the Node Dashboard

1. Select the business application.

2. In the left navigation pane, click .Servers -> App Servers -> <Tier> -> <Node>
AppDynamics displays the Node Dashboard for the selected node.

3. Click the tab for the metrics you want to view.

See for more details.Node Dashboard

To access the Metric Browser

http://docs.appdynamics.com/display/PRO14S/Monitor+Databases
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/fxk122b4(v=vs.100).aspx
http://docs.appdynamics.com/display/PRO14S/Node+Dashboard

Copyright © AppDynamics 2012-2014 Page 133

1.
2.
3.
4.
5.

In the left navigation pane of the Controller, click .Analyze -> Metric Browser
Expand the branch of the .Application Infrastructure Performance Metric Tree
Expand the tier that you want to view.
Expand the tree for each category of metrics.
To view the CLR metrics in the Metric Browser, expand Application Infrastructure

.Performance -> <Node> -> CLR

See for more details.Metric Browser

Alerting for CLR Health

http://docs.appdynamics.com/display/PRO14S/Metric+Browser

Copyright © AppDynamics 2012-2014 Page 134

You can set up health rules based on the infrastructure metrics. Once you have a health rule, you
can create specific policies based on health rule violations. One type of response to a health rule
violation is an alert.

In addition to the default metrics, you may be interested in additional metrics. You can specify
additional performance counters to be reported by the .NET Machine Agent. See Enable

 for details.Monitoring for Windows Performance Counters

Once you add a custom metric you can create a health rule for it and receive alerts when
conditions indicate problems.

See for details on health rules and policies. Alert and Respond

Learn More

Infrastructure Monitoring
Performance Counters for ASP.NET (external website)
Install the App Agent for .NET
Enable Monitoring for Windows Performance Counters

Monitor IIS
Default Metrics Available in the .NET Environment

ASP.NET Metrics
ASP.NET Application Metrics
IIS Metrics

Monitoring IIS Application Pools
To view the IIS application pools:

AppDynamics uses Microsoft Windows Performance Counters to gather .NET metrics. These
preconfigured IIS related metrics can be viewed in the Metric Browser.

For more information on Windows Performance Counters, refer to the Microsoft documentation Pe
.rformance Counters for ASP.NET

Default Metrics Available in the .NET Environment

 Internet Information Services (IIS) must be installed on the machine for you to view the metrics
for the following:

IIS
ASP.NET
ASP.NET Application

ASP.NET Metrics

To view the ASP.NET metrics in the , expand Metric Browser Application Infrastructure
.Performance -> <Node> -> ASP.NET

AppDynamics reports the following ASP.NET metrics:

http://docs.appdynamics.com/display/PRO14S/Alert+and+Respond
http://docs.appdynamics.com/display/PRO14S/Infrastructure+Monitoring
http://msdn.microsoft.com/en-us/library/fxk122b4(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083%28v=vs.85%29.aspx
http://docs.appdynamics.com/display/PRO14S/Metric+Browser

Copyright © AppDynamics 2012-2014 Page 135

Application Restarts
Applications Running
Requests Disconnected
Requests Queued
Requests Rejected
Request Wait Time
Worker Process Restarts

ASP.NET Application Metrics

To view the ASP.NET Application metrics in the , expand Metric Browser Application
.Infrastructure Performance -> <Node> -> ASP.NET Applications

AppDynamics reports the following ASP.NET Application metrics:

Anonymous Requests
Anonymous Requests/sec
Cache Total Entries
Cache Total Hit Ratio
Cache Total Turnover Rate
Cache API Entries
Cache API Hit Ratio
Cache API Turnover Rate
Errors Unhandled During Execution/sec
Errors Total/sec
Errors During Preprocessing
Errors During Compilation
Errors During Execution
Errors Unhandled During Execution
Errors Unhandled During Execution/sec
Errors Total
Errors Total/sec
Output Cache Entries
Output Cache Hit Ratio
Output Cache Turnover Rate
Pipeline Instance Count
Requests Executing
Requests Failed
Requests In Application Queue
Requests Not Found
Requests Not Authorized
Requests Succeeded
Requests Timed Out
Requests Total
Requests/sec
Session State Server Connections Total
Session SQL Server Connections Total
Sessions Active

http://docs.appdynamics.com/display/PRO14S/Metric+Browser

Copyright © AppDynamics 2012-2014 Page 136

Sessions Abandoned
Sessions Timed Out
Sessions Total
Transactions Aborted
Transactions Committed
Transactions Pending
Transactions Total
Transactions/sec

IIS Metrics

From the :Metric Browser

To view the IIS metrics for a tier, expand Application Infrastructure Performance ->
.<Tier> -> IIS

To View the IIS metrics for a node, expand Application Infrastructure Performance ->
.<Tier> -> Individual Nodes -> <Node> -> IIS

Each metric is reported for the entire tier, each individual application pool, and each individual
node as follows:

Application Infrastructure Performance -> <Tier> -> IIS = combined for all IIS processes
in all Application Pools for this tier
Application Infrastructure Performance -> <Tier> -> Application Pools -> <application
pool name> = combined for all processes in this specific Application Pool
Application Infrastructure Performance -> <Tier> -> Individual Nodes -> <Node> =
metrics for the specific node.

Monitoring IIS Application Pools

You can monitor the health of IIS application pools for the instrumented .NET nodes in a tier. You
can view the information by application pool, machine, and process IDs in varying hierarchies.

These groupings enable you to visualize key performance indicators for your infrastructure:

Health of the node in the specified time-range for a particular group.
App Server Agent's status in the specified time-range.
Last CLR restart.
A link to the parent tier.

To view the IIS application pools:

1. In the left navigation pane, select the tier that you want to monitor: Servers -> AppServers ->
.<Tier>

2. Click the tab.IIS App Pools
The IIS App Pools list displays.

3. (Optional) From the dropdown menu, select how you want to view theGroup Nodes By
application pools and machines for this tier.

http://docs.appdynamics.com/display/PRO14S/Metric+Browser

Copyright © AppDynamics 2012-2014 Page 137

4. To view a node's dashboard, double-click the node in the list. From there you can select the
various tabs for details about performance of the node. See .Node Dashboard

 If a machine or application pool name is not available for a .NET node, an "Unknown App
" / " " grouping is created.Pool Unknown Machine

Monitor Async Transactions for .NET

Asynchronous Transactions in .NET
Supported asynchronous programming patterns
To enable asynchronous exit point detection

Identify Asynchronous Transactions in Dashboards
Troubleshoot Asynchronous Calls in Transaction Snapshots

Transaction Snapshot Flow Map
Snapshot Execution Waterfall View
Call Graph

Analyze Asynchronous Activity in the Metric Browser
Learn More

This topic describes how to enable asynchronous exit point detection in the App Agent for .NET. It
covers the .NET asynchronous programming patterns the agent detects and provides instruction
on how to use AppDynamics Controller features that represent asynchronous transactions.

For more information about remote services and exit points, see and Monitor Remote Services Co
.nfigure Backend Detection for .NET

Asynchronous Transactions in .NET

Developers use asynchronous programming patterns to create scalable, more performant
applications. Microsoft .NET lets you designate methods as asynchronous tasks. The .NET
runtime releases resources for asynchronous methods while tasks complete. When task
processing finishes, the runtime calls back to the originating asynchronous method so the method
may continue processing.

Because tasks may execute in parallel, AppDynamics sometimes represents asynchronous
activity differently from synchronous activity in the Controller.

Supported asynchronous programming patterns

The agent discovers the following asynchronous programming patterns for HTTP, Web Service,
and WCF exit points:

Microsoft .NET 4.5 and keywords. See async await Asynchronous Programming with Async

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://msdn.microsoft.com/en-us/library/hh191443.aspx

Copyright © AppDynamics 2012-2014 Page 138

.and Await

Not limited to exit point discovery:

Microsoft .NET 4.5 wrapper. See TaskFactory.FromAsync TPL and Traditional .NET
.Framework Asynchronous Programming

 If the entry point on a downstream WCF tier is asynchronous, the agent doesn't detect the
transaction on the downstream tier.

To enable asynchronous exit point detection

To enable asynchronous exit point detection, register the node property.async-tracking

For instructions on how to set a node property, see .App Agent Node Properties

Name: async-tracking
: Enable detection of asynchronous exit points. , enable thread correlationDescription New in 3.8.5

for ThreadPoolQueueUserWorkItem.
: BooleanType
: TrueValue

 The default value is .False

Identify Asynchronous Transactions in Dashboards

When AppDynamics detects asynchronous exit points in an application it labels the calls as async
 in the dashboards. Because they may execute simultaneously the Controller doesn't display
percentage value of the end-to-end transaction time for asynchronous calls.

For example, consider a travel site application that asynchronously searches fares on multiple
provider sites and displays them back to the customer. In this case, the agent discovers the
asynchronous HTTP calls and displays them on the transaction flow map.

http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/dd997423(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997423(v=vs.110).aspx
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 139

 For further visibility of asynchronous calls, edit the current flow map and click Use dotted line u
nder Asynchronous Activity.

Use the transaction flow tree view of the asynchronous transaction to display errors and time spent
in asynchronous tasks.

Troubleshoot Asynchronous Calls in Transaction Snapshots

Transaction snapshots include several features to help you discover problem areas in business
transactions that use asynchronous methods. For an overview of transaction snapshots, see Trans

.action Snapshots

Transaction Snapshot Flow Map

The Transaction Snapshot Flow Map graphically represents the business transaction. It displays
the user experience, execution time, and timestamp of the transaction. The flow map also provides
details of the overall time that is spent in a particular tier and in database and remote service calls.
The label indicates asynchronous calls.async

Snapshot Execution Waterfall View

http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

Copyright © AppDynamics 2012-2014 Page 140

The transaction Snapshot Execution Waterfall View shows a timeline representation of the
end-to-end execution of the business transaction. Synchronous and asynchronous processes
appear on a bar diagram illustrating their relative execution time arranged in chronological order.

The waterfall view enables you to visually identify which processes are running the longest.
Double-click a bar to drill down to a call graph and investigate problematic code.

Call Graph

When the agent detects asynchronous exit points, it displays an link in the await Exit
 column of the call graph in the Call Drill Down. Click the link to display a list of theCalls/Threads

asynchronous calls. The format of the await link is as follows:

await@<tier name>

For example, the Travel Search Web tier makes asynchronous calls to the internal customer
management system and to provider backends. The link shows as "await@Travel Search Web".

The Exit Calls and Async Activities window shows a list of the exit calls and the corresponding aw
 continuation calls.ait

Exit calls display by type: HTTP, web service, or WCF.
Continuations/call backs display as name.await@tier

For example:
HTTP call to the Customer
Management tier

Continuation call back to the

Copyright © AppDynamics 2012-2014 Page 141

Travel Search tier

Analyze Asynchronous Activity in the Metric Browser

The Metric Browser displays asynchronous activity in the following places:

Business Transaction Performance -> Business Transactions -> tier > business
transaction -> Thread Tasks -> Asynchronous Operation -> External Calls
Overall Application Performance -> tier -> Thread Tasks -> Asynchronous Operation
-> External Calls
Overall Application Performance -> tier -> Individual Nodes -> node name -> Thread
Tasks -> Asynchronous Operation -> External Calls

For example:

Copyright © AppDynamics 2012-2014 Page 142

1.

For more information on how to use the Metric Browser, see .Metric Browser

Learn More

Using Asynchronous Methods in ASP.NET 4.5

Monitor Oracle Backends for .NET with AppDynamics for Databases

Configure Prerequisites
Monitor Oracle Database Backends

To monitor Oracle databases from the Controller
Learn More

Oracle ODP.NET database backends integrate with AppDynamics for Databases. This topic
covers how to configure integration and an introduction to the enhanced features.

Configure Prerequisites

Before you can take advantage of the integration for Oracle backends with AppDynamics for
Databases, you must perform the following setup:

http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://www.asp.net/web-forms/tutorials/aspnet-45/using-asynchronous-methods-in-aspnet-45

Copyright © AppDynamics 2012-2014 Page 143

1.

2.

3.

4.

1.

Install AppDynamics for Databases and add a collector for your Oracle database. See Install
 and .AppDynamics for Databases Add an AppDynamics for Databases Collector

Enable integration with AppDynamics for Databases in the Controller. See Integrate with
.AppDynamics for Databases

Log off from the Controller, then log on again.

Enable the Vendor property for ADO.NET backend naming. For more information see Changing
.the Default ADO.NET Automatic Discovery and Naming

Monitor Oracle Database Backends

After you configure integration, AppDynamics enables links from the Controller to AppDynamics
for Databases.

To monitor Oracle databases from the Controller

Right-click the Oracle database and click .Link to AppDynamics for Databases

AppDynamics for Databases requires the Vendor property to identify the Oracle
database.

In addition to the flow map, you can right-click the Oracle database in Servers >
to display the .Databases Link to AppDynamics for Databases

http://docs.appdynamics.com/display/ADDB/Install+AppDynamics+for+Databases
http://docs.appdynamics.com/display/ADDB/Install+AppDynamics+for+Databases
http://docs.appdynamics.com/display/ADDB/Add+a+Collector
http://docs.appdynamics.com/display/PRO14S/Integrate+with+AppDynamics+for+Databases
http://docs.appdynamics.com/display/PRO14S/Integrate+with+AppDynamics+for+Databases
http://docs.appdynamics.com/display/PRO14S/ADO.NET+Exit+Points#ADO.NETExitPoints-ChangingtheDefaultADO.NETAutomaticDiscoveryandNaming
http://docs.appdynamics.com/display/PRO14S/ADO.NET+Exit+Points#ADO.NETExitPoints-ChangingtheDefaultADO.NETAutomaticDiscoveryandNaming

Copyright © AppDynamics 2012-2014 Page 144

1.

2.

3.

AppDynamics for Databases looks for a database match in its repository and displays the
database platform window.

If it doesn't find a match, you can select your database from a list and manually map it. You
only need to map the database once. The next time you link, the database platform window
displays automatically.

For information on manually mapping your database, see .Manually Map a Database
See for more information on monitoring with AppDynamics forMonitor Databases
Databases.

Learn More

Introduction to AppDynamics for Databases

Monitor Databases

http://docs.appdynamics.com/display/ADDB/Manually+Map+a+Database
http://docs.appdynamics.com/display/ADDB/Monitor+Databases
http://docs.appdynamics.com/display/ADDB/Introduction+to+AppDynamics+for+Databases
http://docs.appdynamics.com/display/ADDB/Monitor+Databases

Copyright © AppDynamics 2012-2014 Page 145

Tutorials for .NET

Quick Tour of the User Interface

Overview Tutorials for .NET

Quick Tour of the User Interface

https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html

Copyright © AppDynamics 2012-2014 Page 146

Manual Installation and Configuration

Administer App Agents for .NET

AppDynamics Applications and IIS Applications
Log Files
Additional App Agent for .NET Administration Topics

AppDynamics Applications and IIS Applications

Usually there is not a 1-to-1 correspondence between an AppDynamics business application and
an IIS application. A typical AppDynamics configuration assigns one IIS application per tier, and
multiple tiers to a single AppDynamics business application. For example, a front end is a single

https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html
https://appdynamics-static.com/education/video/dotNETAgentManualInstallationandConfiguration/dotNETAgentManualInstallationandConfiguration_player.html

Copyright © AppDynamics 2012-2014 Page 147

tier, various services are represented as another tier or tiers, and they all belong to a single
business application. See .Name Business Applications, Tiers, and Nodes

Log Files

The configuration file that controls log files for the App Agent for .NET is located at:

C:\Program Files\AppDynamics\AppDynamics .NET Agent\AppDynamicsAgentLog.config

The configuration file uses NLog rules. See .http://nlog-project.org/

Additional App Agent for .NET Administration Topics

Disable Instrumentation for an IIS Application Pool

When to Consider Disabling Instrumentation
To disable an IIS application pool or pools

When to Consider Disabling Instrumentation

By default when you install the App Agent for .NET on a machine and use automatic tier naming,
the agent instruments every IIS application. You may not need to monitor all application pools.

To disable an IIS application pool or pools

1. Open the config.xml file as administrator and edit the file as follows:

Windows Server 2008 and later

Windows Server 2003

2. Add the Application Pools block as a child of the IIS element. See App Agent for .NET
.Configuration Properties

<!-- Disable instrumentation for an application pool -->
 <application-pools>
 <!-- Do not instrument applications in DefaultAppPool when "enabled"
attribute is set to false -->
 <application-pool name="DefaultAppPool" enabled="false" />
 </application-pools>

Set the Application Pool element name attribute to the application pool name. This example
disables instrumentation for the DefaultAppPool. You may add multiple Application Pool elements.

3. Restart the AppDynamics.Agent.Coordinator.

%ProgramData%\AppDynamics\DotNetAgent\Config\config.xml

%AllUsersProfile%\Application Data\AppDynamics\DotNetAgent\Config\config.xml

http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes
http://nlog-project.org/

Copyright © AppDynamics 2012-2014 Page 148

4. Restart IIS.

Naming Conventions for .NET Nodes

Node Naming Syntax
Syntax for IIS Nodes

Machine Name
Tier
Site/App

Syntax for IIS Web Garden Nodes
Process Index

Syntax for Windows Service Nodes
Machine Name
Service Name

Syntax for Standalone Application Nodes
Machine Name
Executable Name

Maximum Number of Nodes Generated

This topic describes the conventions that the App Agent for .NET uses to automatically name
nodes.

Node Naming Syntax

Node naming relies on the application name to directly link nodes to an application. This naming
convention clarifies node names for applications in an application pool hosting multiple
applications and node names for applications in a recycle process.

 If you are upgrading to 3.8 from the App Agent for .NET version 3.7.7 or earlier, the new node
naming convention takes effect upon restart. Nodes named under the old scheme become
historical nodes with no correlation to the new nodes.

Syntax for IIS Nodes

The naming pattern for IIS nodes is as follows:

<machine-name>-<tier>-<site>/<app>

We omit <app> when the application is the default site root application.
We omit <tier> when the tier name is the same as the site name.

For example:

WIN-86M7CEJO6P5-Order Server-OrderSvc

WIN-86M7CEJO6P5 is the machine name.
Order Server is the tier name.

Copyright © AppDynamics 2012-2014 Page 149

OrderSvc is the site name. The application is the default app in the site root, so we omit it.

 Different .NET versions of the same application have their own versions of the CLR and
run on independent processes. Therefore they will show up as different nodes.

Machine Name

Machine name is the NetBIOS name of the local computer where the application runs.

Tier

Tier is the name of the logical tier for the application. See .Logical Model

Site/App

Site is the IIS Site name.
App is the virtual path within the site.

For example:

WIN-86M7CEJO6P5-Order Server-Store/ProcessOrder

Store is the IIS Site name.
ProcessOrder is the application name within the site.

Syntax for IIS Web Garden Nodes

The syntax for web gardens is the same as IIS Nodes, except that we append a process index to
differentiate between the worker processes in the web garden.

<machine-name>-<tier>-<site>/<app>-<process-index>

Process Index

The process index represents the zero-based index of the process. For a web garden-IIS-hosted
application with five worker processes, the index could be 0, 1, 2, 3 or 4.

 Don't confuse the process index with the Windows process id.

When IIS first launches web garden processes, the agent assigns a sequential index to each
process. However, as IIS recycles processes, the agent reuses the available indexes freed by
terminated processes. This means there will likely be no correlation between the index sequence
and the chronological start of the process.

There are edge cases where you may see more nodes than the maximum number of worker
processes. This can happen when a long-running request prevents a process from shutting down
before its replacement launches.

Syntax for Windows Service Nodes

The naming pattern for Windows service nodes is as follows:

http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 150

<machine-name>-<tier>-<service-name>

We omit <tier> when the tier name is the same as the service name.

Machine Name

Machine name is the NetBIOS name of the local computer where the Windows service runs.

Service Name

Service name is the same as in the service properties window.Service name

For Example:

WIN-86M7CEJO6P5-MyWindowsService

WIN-86M7CEJO6P5 is the machine name.
MyWindowsService is the Service name.

Syntax for Standalone Application Nodes

The naming pattern for standalone applications is as follows:

<machine-name>-<tier>-<executable-name>

We omit <tier> when the tier name is the same as the executable name.

Machine Name

Machine name is the NetBIOS name of the local computer where the standalone application runs.

Executable Name

Executable name is the standalone application executable file name.

For Example:

WIN-86M7CEJO6P5-MyStandaloneApp.exe

WIN-86M7CEJO6P5 is the machine name.
MyStandaloneApp.exe is the executable file name.

Maximum Number of Nodes Generated

Below is the algorithm for calculating how many nodes will be generated. It refers to all nodes that
are alive, as historical node counts can change via retention and deletion time frames as well as
manual deletion, etc.

Copyright © AppDynamics 2012-2014 Page 151

IISApp1_AppPool_MaxWorkerProcesses
+
IISApp2_AppPool_MaxWorkerProcesses
+...
IISAppN_AppPool_MaxWorkerProcesses
+...
Self-Hosted Process (Windows Service, Console Application, etc)
=
Number of Nodes

 In the case of a webgarden, by default AppDynamics flags a node as historical within five
minutes after it recycles. Wait 5 minutes for a recycled node to disappear from the application flow
map.

App Agent for .NET Configuration Properties

Overview
Where to Configure App Agent Properties

AppDynamics Agent Element
Controller Element

Controller host attribute
Controller port attribute
Controller ssl attribute

Controller Application Element
Application name attribute

Account Element
Account name attribute
Account password attribute

Proxy Element
Proxy host attribute
Proxy port attribute
Proxy enabled attribute

Machine Agent Element
Performance Counters Element

Performance Counter element
Performance Counter cat attribute
Performance Counter name attribute
Performance Counter instance attribute

Sample Machine Agent Configuration with Performance Counters
Instrumentation Element

Instrumentor element
Instrumentor name attribute
Instrumentor enabled attribute

Sample Machine Agent Configuration with Thread Correlation Instrumentors
Additional App Agent for .NET Instrumetors

App Agents Element
App agents enabled attribute

Copyright © AppDynamics 2012-2014 Page 152

App Agents - IIS Element
IIS Automatic Instrumentation Element

Automatic enabled attribute
IIS Application Pools Element
IIS Application Pool Element

Application pool name attribute
Application pool enabled attribute

Application Pool Tier Element
Tier name attribute

IIS Applications Element
Application Element

Application site attribute
Application path attribute
Application port attribute
Application enabled attribute

Application Tier Element
Tier name attribute

Sample IIS Application Configuration
App Agents - Windows Services Element

Windows Service Element
Service name attribute
Service app-domain-name attribute

Windows Service Tier Element
Tier name attribute

Sample Windows Service Configuration
App Agents - Standalone Applications Element

Standalone Application Element
Standalone Application executable attribute
Standalone application app-domain-name attribute

Standalone Application Tier Element
Tier name attribute

Sample Standalone Application Configuration
Learn More

Configure the App Agent for .NET properties using a single configuration file. This topic describes
the structure and content of the config.xml file to help you customize agent behavior. To use the
.NET Agent Configuration Utility, see .Configure the App Agent for .NET

Overview

The App Agent for .NET uses a single configuration file to control agent behavior: Controller
connectivity, machine agent operations, and app agent functionality for IIS applications, Windows
services, and standalone applications such as console applications, WinForms, or WPF. Benefits
of the unified configuration file include:

Maintain agent configurations separately from web.config files.
Enable instrumentation of Windows services and standalone applications without

Copyright © AppDynamics 2012-2014 Page 153

environment variables.
Control agent behavior for specific applications with hierarchical configuration.

To configure connection to the Controller, See .Controller Element

To configure the .NET machine agent, See .Machine Agent Element

To configure app agents for IIS applications, see .App Agents - IIS Element

To configure an app agent for a Windows service, see .App Agents - Windows Services Element

To configure an app agent for a standalone application, see App Agents - Standalone Applications
.Element

Where to Configure App Agent Properties

Configure the agent properties in the config.xml file in the agent directory. If you run theConfig
.NET Agent Configuration Utility, it writes the config.xml to the following locations:

Windows Server 2008 and later

%ProgramData%\AppDynamics\DotNetAgent\Config\config.xml

Windows Server 2003

%AllUsersProfile%\Application Data\AppDynamics\DotNetAgent\Config\config.xml

Sample config.xml files install to the following location:

%ProgramFiles%\AppDynamics\AppDynamics .NET Agent\SampleConfigurations

 After you edit the config.xml, you must restart the AppDynamics.Agent.Coordinator service.
Then restart IIS, your Windows service, or standalone application for your instrumentation
changes to take effect.

Minimal .NET App Agent controller-info.xml File

The most basic configuration demonstrates the required sections for agent configuration. This
sample instruments all IIS applications using the automatic element (). No<automatic />
Windows services or standalone applications are instrumented.

Copyright © AppDynamics 2012-2014 Page 154

<?xml version="1.0" encoding="utf-8"?>
<appdynamics-agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <controller host="mycontroller.mycompany.com" port="8090" ssl=false">
 <application name="MyDotNetApplication" />
 </controller>
 <machine-agent />
 <app-agents>
 <IIS>
 <automatic />
 </IIS>
 </app-agents>
</appdynamics-agent>

AppDynamics Agent Element

The Appdyanmics Agent element is the root container element for configurations in the config.xml.

Required Element: <appdynamics-agent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Controller Element

The Controller element is a child of the AppDynamics Agent element. It specifies the connection
information for the AppDyanmics Pro Controller.

 The App Agent for .NET only supports configuration of one Controller and business application
per server. Use tiers to organize different applications you instrument on a single server. See Logi

.cal Model

Required Element: <controller host="mycontroller.mycompany.com" port="8090"
ssl="false">

Controller host attribute

The Controller host attribute indicates the host name or the IP address of the AppDynamics
Controller. For an on-premise Controller, use the value for Application Server Host Name you
provided when you installed the Controller. If you use the AppDynamics SaaS Controller, see the
Welcome email from AppDynamics.

Type: String
 NoneDefault:

: YesRequired

Controller port attribute

The Controller port attribute specifies the HTTP(S) port of the AppDynamics Controller. If the
Controller ssl attribute is set to true, specify the HTTPS port of the Controller; otherwise specify the
HTTP port.

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 155

Type: Positive Integer
 8090Default:

For On-premise installations, the defaults are port 8090 for HTTP and port 8181 for HTTPS.

For the SaaS Controller, use port 80 for HTTP or port 443 for HTTPS.

Required: Yes

Controller ssl attribute

To enable encryption over SSL between the agent and the Controller, set the Controller ssl
attribute to "true".

Type: Boolean
 falseDefault:

: NoRequired

Controller Application Element

The Controller Application element is a child of the Controller element. It indicates the name of the
logical business application you see in the Controller interface.

Required Element: <application name="MyDotNetApplication"/>

Application name attribute

Set the application name attribute to the business application you use in the controller. If the
application name does not exist, the Controller will create it when the agent registers. All
instrumented applications in the config.xml register with the same business application in the
Controller. See .Logical Model

Type: String
 NoneDefault:

: YesRequired

 You specify a Tier for individual applications in the .App Agents Element

Account Element

The Account element is a child of the Controller element. If the AppDynamics Controller runs in
multi-tenant mode or if you use the AppDynamics SaaS Controller, specify the account name and
account access key for the agent to authenticate with the Controller. If you are using the
AppDynamics SaaS Controller, the account name is provided in the Welcome email from
AppDynamics.

Optional Element: <account name="mycontroller.saas.appdynamics.com"
password="myaccesskey"/>

Account name attribute

The account name attribute indicates to the account name for the SaaS or multi-tenant Controller.

Type: String
 NoneDefault:

http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 156

: Only for SaaS or multi-tenant ControllersRequired

Account password attribute

The account password attribute indicates the access key for the SaaS or multi-tenant Controller.

Type: String
 NoneDefault:

: Only for SaaS or multi-tenant ControllersRequired

Proxy Element

The Proxy element is a child of the Controller element. Use it to configure connection to the
Controller through a proxy server with no authentication.

Optional Element: <proxy host="proxy-name" port="3128" enabled="true"/>

Proxy host attribute

The proxy host attribute indicates the proxy server host name or IP address.

Type: String
 NoneDefault:

: host is required for the proxy elementRequired

Proxy port attribute

The proxy port attribute indicates the proxy server port.

Type: Positive Integer
 NoneDefault:

: port is required for the proxy elementRequired

Proxy enabled attribute

To enable Controller access through a proxy server, set the proxy enabled attribute to "true".

Type: Boolean
 falseDefault:

: NoRequired

Machine Agent Element

The Machine Agent element is a child of the AppDynamics Agent element. An empty Machine
Agent element enables the default instrumentation for the .NET machine agent (See Monitor CLRs
and). Enable optional additional Microsoft Performance Counters or App Agent forMonitor IIS
.NET instrumentors as children of the Machine Agent element.

Required Element: <machine-agent/>

Performance Counters Element

The Performance Counters element is a child of the Machine Agent element. It is a container for
all performance counters.

Copyright © AppDynamics 2012-2014 Page 157

Optional Element: <perf-counters>

Performance Counter element

The Performance Counter element is a child of the Performance Counters element. For a list of
performance counters to enable, see .Performance Counters in the .NET Framework

Optional Element: <perf-counter cat="category" name="name"
instance="instance"/>

Performance Counter cat attribute

The performance counter cat attribute indicates the performance counter category.

Type: String
 NoneDefault:

: Category is required for the Performance Counter element.Required

Performance Counter name attribute

The performance counter name attribute indicates the performance counter name.

Type: String
 NoneDefault:

: Name is required for the Performance Counter element.Required

Performance Counter instance attribute

The performance counter instance attribute is the performance counter instance value.

Type: String
 NoneDefault:

: Instance is required for the Performance Counter element.Required

Sample Machine Agent Configuration with Performance Counters

<machine-agent>
 <!-- Additional machine level Performance Counters -->
 <perf-counters>
 <perf-counter cat="Network Interface" name="Bytes Sent" instance="Local
Area Connection"/>
 </perf-counters>
 </machine-agent>

Instrumentation Element

The Instrumentation element is a child of the Machine Agent element. It allows you to enable
additional App Agent for .NET instrumetors such as or thread correlation correlation for .NET

.remoting

Optional Element: <instrumentation>

Instrumentor element

http://msdn.microsoft.com/en-us/library/w8f5kw2e%28v=VS.80%29.aspx

Copyright © AppDynamics 2012-2014 Page 158

The element is a child of the Instrumentation element. The instrumentor elementInstrumentor
specifies the App Agent for .NET instrumentor to implement.

Optional Element: <instrumentor name="instrumentor name" enabled="true"/>/>

Instrumentor name attribute

The instrumentor name attribute indicates the instrumentor name.

Type: String
 NoneDefault:

: Name is required for the Instrumentor element.Required

Instrumentor enabled attribute

Set the instrumentor enabled attribute to "true" to enable instrumentation.

Type: Boolean
 falseDefault:

: No.Required

 The current configuration syntax is . Versions prior to 3.7.8 usedenabled="true"
disabled="false".

Sample Machine Agent Configuration with Thread Correlation Instrumentors

<machine-agent>
 <!--Enable thread correlation-->
 <instrumentation>
 <instrumentor name="ThreadCorrelationThreadPoolCLR2Instrumentor"
enabled="true"/>
 <instrumentor name="ThreadCorrelationThreadPoolCLR4Instrumentor"
enabled="true"/>
 <instrumentor name="ThreadStartCLR2Instrumentor" enabled="true"/>
 <instrumentor name="ThreadStartCLR4Instrumentor" enabled="true"/>
 </instrumentation>
 </machine-agent>

Additional App Agent for .NET Instrumetors

See .Enable Thread Correlation for .NET
See .Enable Correlation for .NET Remoting
See .Enable Instrumentation for WCF Data Services

App Agents Element

The App Agents element is a child of the AppDynamics Agent element. It is a container for app
agent configurations for IIS applications, Windows services, and standalone applications.

Required Element: <app-agents enabled="true">

App agents enabled attribute

Copyright © AppDynamics 2012-2014 Page 159

To disable application monitoring on the server, set the app agents enabled attribute to "false".

Type: Boolean
 trueDefault:

: NoRequired

App Agents - IIS Element

The element is a child of the App Agents element. There are three options to configure IISIIS
applications:

Automatic configuration
Application pool configuration
Application configuration

The settings for any application pool apply to all applications within the app pool unless the
individual application has a specific configuration.

Explicit child-level configurations override parent-level configurations. Otherwise, children inherit
parent configurations.

Optional Element: <IIS>

IIS Automatic Instrumentation Element

The Automatic element is a child of the IIS element. Use the Automatic element to enable or
disable automatic instrumentation for all IIS apps. You can configure automatic instrumentation
and manual instrumentation both. Manual configurations override automatic ones.

Optional Element: <automatic enabled="false" />

Automatic enabled attribute

Set the automatic enabled attribute to "true" to enable instrumentation for all IIS applications. This
is the default setting if you use the .NET Agent Configuration Utility automatic configuration option.
To disable automatic instrumentation for all IIS applications, set the value to "false".

Type: Boolean
 trueDefault:

: NoRequired

IIS Application Pools Element

The IIS Application Pools element is a child of the IIS element. It is a container element for all the
IIS application pools you configure for instrumentation.

 Optional Element: <application-pools>

IIS Application Pool Element

The Application Pool element is a child of the Application Pools element.. You may have multiple
application pool elements distinguished by the name attribute. Use the application pool element to
configure the app agent for all applications within an application pool. For more information on IIS
application pools, see .Managing Application Pools in IIS

http://technet.microsoft.com/en-us/library/cc753449(v=ws.10).aspx

Copyright © AppDynamics 2012-2014 Page 160

 Application-specific configurations in the IIS Applications element override application pool
configurations.

Optional Element: <application-pool name="DefaultAppPool" enabled="false">

Application pool name attribute

The application pool name attribute indicates the name of the IIS Application Pool.

Type: String
 NoneDefault:

: Name is required for the Application Pool element.Required

Application pool enabled attribute

Set the application pool enabled attribute to "false" to disable instrumentation for all applications in
the application pool. Set the value to "true" to instrument all applications in the application pool.

Type: Boolean
 None. Defaults to true if not specified.Default:

: NoRequired

Application Pool Tier Element

The Tier element is a child of the Application Pool element. If you enable instrumentation for an
Application pool, you must use a Tier element to assign the pool's applications to a tier in the
Controller. See .Logical Model

Required Element: <tier name="Inventory" />

Tier name attribute

Use the tier name attribute to specify the tier.

Type: String
 NoneDefault:

 YesRequired:

IIS Applications Element

The element is a child of the IIS element. It is a container element for all the IISIIS Applications
applications you configure for instrumentation.

 Optional Element: <applications>

Application Element

The Application element is a child of the Applications element. Use multiple application elements
to instrument different sites and applications. To learn more about IIS sites and applications, see U

.nderstanding Sites, Applications, and Virtual Directories on IIS 7 and Above

Optional Element: <application path="/" site="FirstSite" port="8008">

Application site attribute

The application site attribute indicates the root site in IIS for the application.

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://www.iis.net/learn/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#About7.0
http://www.iis.net/learn/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#About7.0

Copyright © AppDynamics 2012-2014 Page 161

Type: String
 NoneDefault:

: Site is required for the Application element.Required

Application path attribute

The application path attribute indicates the application's path relative to the root site. Use the
forward slash to indicate the root site and instrument all children applications. Use the path to an
application to instrument the specific application and any children.

For example: Site1 hosts two applications AppX and AppY. To instrument Site 1, AppY and AppZ,
set the path to "/". To instrument AppY, but not AppZ, set the path to "/AppY".

Type: String
 /Default:

: Path is required for the Application element.Required

Application port attribute

For cases where two or more sites in IIS 6 have the same site name, set the site port attribute to
differentiate between the sites.

Type: Positive Integer
 NoneDefault:

: NoRequired

Application enabled attribute

In certain cases you may want to enable instrumentation for a parent application, but disable it for
a child application. In this case create an Application element for the child application to disable
and set the application enabled attribute to to "false".

Type: Boolean
 trueDefault:

: NoRequired

Application Tier Element

The Tier element is a child of the Application element. If you enable instrumentation for an
application, your must use a Tier element to assign the application to a tier in the Controller. See L

.ogical Model

Required Element: <tier name="Consumer" />

Tier name attribute

The tier name attribute indicates the business application tier.

Type: String
 NoneDefault:

 YesRequired:

Sample IIS Application Configuration

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 162

<IIS>
 <!-- Automatic instruments all IIS applications when enabled -->
 <automatic enabled="false" />

 <!-- Application Pool agent configurations -->
 <application-pools>
 <!-- Do not instrument applications in DefaultAppPool when "enabled"
attribute is set to false -->
 <application-pool name="DefaultAppPool" enabled="false">
 <tier name="Tier Name"/>
 </application-pool>

 <!-- Instrument applications in the OtherAppPpool and assign them to the
Inventory tier -->
 <application-pool name="OtherAppPool">
 <tier name="Inventory"/>
 </application-pool>
 </application-pools>

 <applications>
 <!-- Instrument all applications in the First Site -->
 <application path="/" site="FirstSite">
 <tier name="Order"/>
 </application>
 <!-- Instrument the /app application and child apps in the Second Site
-->
 <!-- but not the root Second Site application -->
 <application path="/app" site="SecondSite">
 <tier name="Consumer"/>
 </application>
 </applications>
 </IIS>

App Agents - Windows Services Element

The Windows Services element is a child of the App Agents element. It is a container element for
all the Windows Services you configure for instrumentation.

 For instructions to instrument Windows services, see Enable the App Agent for .NET for
.Windows Services

Optional Element: <windows-services>

Windows Service Element

The Windows Service element is a child of the Windows Services element. It specifies a Windows
service to instrument.

Optional Element: <windows-service name="MyWindowsService">

Service name attribute

Copyright © AppDynamics 2012-2014 Page 163

The service name attribute indicates the service name for the Windows service to instrument.
 Use the value of the from the service properties window. Do not use the Service name Display

.name

Type: String
 NoneDefault:

 YesRequired:

Service app-domain-name attribute

For applications with multiple application domains, the app-domain-name attribute enables you to
limit instrumentation to specific application domains. See Configure Application Domain Monitoring
.

Type: String
 NoneDefault:

: NoRequired

Windows Service Tier Element

The element is a child of the Windows Service element. If you enable instrumentation for anTier
application, your must use a Tier element to assign the application to a tier in the Controller. See L

.ogical Model

Required Element: <tier name="Consumer" />

Tier name attribute

The tier name attribute indicates the business application tier.

Type: String
 NoneDefault:

 YesRequired:

Sample Windows Service Configuration

<windows-services>
 <windows-service name="MyWindowsService">
 <tier name="Service Tier"/>
 </windows-service>
 </windows-services>

App Agents - Standalone Applications Element

The Standalone Applications element is a child of the App Agents element. It is a container
element for all the standalone applications you configure for instrumentation.

 For instructions to instrument standalone applications, see Enable the App Agent for .NET for
.Standalone Applications

Optional Element: <standalone-applications>

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 164

Standalone Application Element

The Standalone Application element is a child of the Standalone Applications element. It specifies
a standalone application to instrument.

Optional Element: <standalone-application
executable="MyWindowsApplication.exe">

Standalone Application executable attribute

The standalone application executable attribute specifies the file name of the Windows application
to instrument.

 Only use the application file name. Do not include the full path to the file. For example, if you
want to instrument, C:\Program Files\My Application\MyApp.exe, the executable value is
"MyApp.exe". The file extension is optional, so "MyApp" also works.

Type: String
 NoneDefault:

 YesRequired:

Standalone application app-domain-name attribute

For applications with multiple application domains, the app-domain-name attribute enables you to
limit instrumentation to specific application domains. See Configure Application Domain Monitoring
.

Type: String
 NoneDefault:

: NoRequired

Standalone Application Tier Element

The Tier element is a child of the Standalone Application element. If you enable instrumentation
for an application, your must use a Tier element to assign the application to a tier in the Controller.
See .Logical Model

Required Element: <tier name="Consumer" />

Tier name attribute

The tier name attribute indicates the business application tier.

Type: String
 NoneDefault:

 YesRequired:

Sample Standalone Application Configuration

<standalone-applications>
 <standalone-application executable="MyWindowsApplication.exe">
 <tier name="StandaloneApplication Tier"/>
 </standalone-application>
 </standalone-applications>

http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 165

1.

Learn More

Logical Model
Name Business Applications, Tiers, and Nodes
Configure the App Agent for .NET
Enable the App Agent for .NET for Windows Services
Enable the App Agent for .NET for Standalone Applications

Troubleshoot .NET Application Problems

Troubleshoot Slow Response Times for .NET

How Do You Know Response Time is Slow?
You Received an Alert
You are Viewing the Application Dashboard for a Business Application

Initial Troubleshooting Steps
Troubleshooting Methodology

Step 1 - All nodes?
Step 2 - Most business transactions?
Step 3 - Backend problem?
Step 4 - CPU saturated?
Step 5 - Significant garbage collection activity?
Step 6 - Memory leak?
None of the above?

How Do You Know Response Time is Slow?

There are two primary ways you can learn that your application's response time is slow: receiving
an alert and looking at an Application Dashboard.

You Received an Alert

If you have received an email alert from AppDynamics that was configured through the use of Heal
, , or , the email message provides a number of detailsth Rules Policies Actions Workflow Overview

about the problem that triggered the alert. See .Email Notifications

If the problem is related to slow response time, see .Initial Troubleshooting Steps

You are Viewing the Application Dashboard for a Business Application

NOTE: If you know the slow response time relates to a particular business transaction, e.g. an
internal tester reported "Searching for a hotel is slow," skip to the answer No in .Step 2

Display the Application Dashboard (flow map). Look for lines that are yellow or red or tiers
that are not entirely green.

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes
http://docs.appdynamics.com/display/PRO14S/Health+Rules
http://docs.appdynamics.com/display/PRO14S/Health+Rules
http://docs.appdynamics.com/display/PRO14S/Policies
http://docs.appdynamics.com/display/PRO14S/Actions
http://docs.appdynamics.com/display/PRO14S/Workflow+Overview
http://docs.appdynamics.com/display/PRO14S/Notification+Actions#NotificationActions-EmailNotifications

Copyright © AppDynamics 2012-2014 Page 166

1.

If multiple tiers are red or yellow, the problem might be related to a backend (database or
other remote service). Skip to .Step 3
Otherwise, begin troubleshooting with .Initial Troubleshooting Steps

Need more help?

Copyright © AppDynamics 2012-2014 Page 167

Application Dashboard
Flow Maps

Initial Troubleshooting Steps

In some cases, the source of your problem might be easily diagnosed by choosing Troubleshoot
 in the Navigation Pane. See .-> Slow Response Times Troubleshoot Slow Response Times

If you've tried to diagnose the problem using those techniques and haven't found the problem, use
the following troubleshooting methodology to find other ways to determine the root cause of your
issue.

Troubleshooting Methodology

Step 1 - All
nodes?

Is the problem affecting all nodes in a slow tier?
How do I know?
How do I know if the problem is affecting all nodes?

In the Application or Tier Flow Map, click the number
that represents how many nodes are in the tier. This
provides a quick overview of the health of each node
in the tier. The small circle icon indicates whether the
server is up with the agent reporting, and the larger
circle icon indicates Health Rule violation status.

If all the nodes are yellow or red, the answer to the question
in Step 1 is Yes. Otherwise, the answer is No.

Yes – Go to .Step 2

http://docs.appdynamics.com/display/PRO14S/Application+Dashboard
http://docs.appdynamics.com/display/PRO14S/Flow+Maps
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Times

Copyright © AppDynamics 2012-2014 Page 168

No – The problem is either in the node's hardware or in the way
the software is configured on the node. If only one node in a tier
is affected, the problem is probably not related to the
application code.

In the left navigation pane, click Servers -> App Servers
 to display the-> <slow tier> -> <problematic node>

Node Dashboard flow map.

Click the Dashboard tab to get a view of the overall
health of the node.
Click the Hardware tab to see if there is a hardware
resource issue.
Click the Memory tab and sort on various column
headings to determine if there is a shortage of memory or
other memory issue.

You have isolated the problem and don't need to continue with
the rest of the steps below.

Need more help?

Node Dashboard

Step 2 - Most
business
transactions
?

Is the problem affecting most of the business transactions?

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard

Copyright © AppDynamics 2012-2014 Page 169

1.

1.
2.

3.

How do I know?
How do I know if the problem is affecting most of the business
transactions?

On the Application Dashboard, look at the Business
Transaction Health pane on the right side of the
screen.

If the bar representing business transaction health is
primarily yellow or red, the answer to the question in Step 2
is Yes. Otherwise, the answer is No.

Yes – Go to .Step 3

No –

In the left navigation pane, click .Business Transactions
Sort by Health, Server Time, or other column headings to
find the business transaction that is experiencing issues.
Double-click the problematic business transaction to see
its Dashboard, then use the tabs to diagnose the
problem.

You have isolated the problem and don't need to continue with
the rest of the steps below.

Need more help?

Copyright © AppDynamics 2012-2014 Page 170

Business Transaction Dashboard
Business Transaction Monitoring
Business Transactions List
Transaction Snapshots

Step 3 -
Backend
problem?

Are the nodes linked to a backend (database or other remote
service) that might be causing your problem?

How do I know?
How do I know if the nodes are linked to a backend (database or
other remote service) that might be causing my problem?

Display the Tier Flow Map. If any nodes are linked to a
backend, links to those backends are displayed in the
flow map.

If a backend or the line connecting to a backend is red, the
answer to the question in Step 3 is Yes. Otherwise, the
answer is No.

Yes –

Click the line connecting to the backend to see an
information window about the backend. The contents of
the information window vary depending on the type of
backend. Use the various tabs to find the source of the
issue.

http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Dashboard
http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Monitoring
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

Copyright © AppDynamics 2012-2014 Page 171

If the backend is a database, right-click the database
icon. You have a number of options that let you see the
dashboard, drill down, etc. If you have AppDynamics for
Databases, choose Link to AppDynamics for Databases.
You can use AppDynamics for Databases to diagnose
database issues.

You have isolated the problem and don't need to continue with
the rest of the steps below.

No – Go to .Step 4

Need more help?

Backend Monitoring
Configure Backend Detection for .NET
AppDynamics for Databases

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/ADDB/AppDynamics+for+Databases

Copyright © AppDynamics 2012-2014 Page 172

1.
2.
3.

Step 4 - CPU
saturated?

Is the CPU of the CLR saturated?
How do I know?
How do I know if the CPU of the CLR is saturated?

Display the Tier Flow Map.
Click the Nodes tab, and then click the Hardware tab.
Sort by CPU % (current).

If the CPU % is 90 or higher, the answer to the question in
Step 4 is Yes. Otherwise, the answer is No.

Yes – Go to .Step 5

No – Review various metrics in the Metric Browser to pinpoint
the problem.

In the left navigation pane, click Servers -> App Servers ->
. Review these metrics in particular:<slow tier>

ASP.NET -> Application Restarts
ASP.NET -> Request Wait Time
ASP.NET -> Requests Queued

CLR -> Locks and Threads -> Current Logical Threads
CLR -> Locks and Threads -> Current Physical Threads

IIS -> Number of working processes
IIS -> Application pools -> <Business application name>
-> CPU%
IIS -> Application pools -> <Business application name>
-> Number of working processes
IIS -> Application pools -> <Business application name>
-> Working Set

Copyright © AppDynamics 2012-2014 Page 173

1.
2.
3.

You have isolated the problem and don't need to continue with
the rest of the steps below.

Need more help?

Monitor .NET Applications

Step 5 -
Significant
garbage
collection
activity?

Is there significant garbage collection activity?
How do I know?
How do I know if there is significant garbage collection activity?

Display the Tier Flow Map.
Click the Nodes tab, and then click the Memory tab.
Sort by Time Spent on Collections (%) to see what
percentage of processing time is being taken up with
garbage collection activity.

If Time Spent on Collections (%) is higher than acceptable
(say, over 40%), the answer to the question in Step 5 is Yes.
Otherwise, the answer is No.

Yes – Go to .Step 6

No – Use your standard tools to produce memory dumps;
review these to locate the source of the problem.

You have isolated the problem and don't need to continue with
the rest of the steps below.

Need more help?

Monitor .NET Applications

Step 6 -
Memory
leak?

Copyright © AppDynamics 2012-2014 Page 174

1.

2.

Is there a memory leak?
How do I know?
How do I know if there is a memory leak?

From the list of nodes displayed in the previous step
(when you were checking for garbage collecting
activity), double-click a node that is experiencing
significant GC activity.
Click the Memory tab, then review the committed
bytes counter and the size of the Gen0, Gen1, Gen2
and large heaps.

If memory is not being released (one or more of the above
indicators is trending upward), the answer to the question in
Step 6 is Yes. Otherwise, the answer is No.

Yes – Use your standard tools for troubleshooting memory
problems. You can also review ASP.NET metrics; click Servers

.-> App Servers -> <slow tier> -> ASP.NET

No – Use your standard tools to produce memory dumps;
review these to locate the source of the problem.

Whether you answered Yes or No, you have isolated the
problem and don't need to continue with the rest of the steps
below.

Need more help?

Monitor .NET Applications

Copyright © AppDynamics 2012-2014 Page 175

None of the
above?

If slow response time persists even after you've completed the
steps outlined above, you may need to perform deeper
diagnostics.

If you can't find the information you need on how to do so in the
AppDynamics documentation, consider posting a note about
your problem in a community discussion topic. These
discussions are monitored by customers, partners, and
AppDynamics staff. Of course, you can also contact
AppDynamics support.

Need more help?

AppDynamics Pro Documentation
Community Discussion Boards (If you don't see
AppDynamics Pro as a topic, click Sign In at the upper
right corner of the screen.)

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Pro+Documentation
http://community.appdynamics.com/t5/Discussions/ct-p/Discussions

	AppDynamics for .NET
	Supported Environments and Versions for .NET
	Install the App Agent for .NET
	Configure the App Agent for .NET
	App Agent for .NET Directory Structure
	Unattended Installation for .NET
	Upgrade the App Agent for .NET
	Enable SSL for .NET
	Enable the App Agent for .NET for Windows Services
	Enable the App Agent for .NET for Standalone Applications
	AppDynamics for Windows Azure with NuGet
	Manually Install the App Agent for .NET on Windows Azure
	Register for AppDynamics for Windows Azure

	Uninstall the App Agent for .NET
	Resolve App Agent for .NET Installation and Configuration Issues

	Configure AppDynamics for .NET
	Enable Thread Correlation for .NET
	Enable Correlation for .NET Remoting
	Configure Backend Detection for .NET
	WCF Exit Points for .NET
	Message Queue Exit Points for .NET
	Monitor RabbitMQ Backends for .NET

	ADO.NET Exit Points
	Resolve Unknown0 Database Backend Name

	HTTP Exit Points for .NET
	Web Services Exit Points for .NET
	Configure Custom Exit Points for .NET

	Configure Business Transaction Detection for .NET
	POCO Entry Points
	ASP.NET Entry Points
	Import and Export Transaction Detection Configuration for .NET
	Identify MVC Transactions by Controller and Action

	Configure Application Domain Monitoring
	Instrument the DefaultDomain for Standalone Applications
	Getter Chains in .NET Configurations
	Enable Monitoring for Windows Performance Counters
	Configure the .NET Machine Agent
	Enable Instrumentation for WCF Data Services

	Monitor .NET Applications
	Monitor CLRs
	Monitor IIS
	Monitor Async Transactions for .NET
	Monitor Oracle Backends for .NET with AppDynamics for Databases

	Tutorials for .NET
	Overview Tutorials for .NET

	Administer App Agents for .NET
	Disable Instrumentation for an IIS Application Pool
	Naming Conventions for .NET Nodes
	App Agent for .NET Configuration Properties

	Troubleshoot .NET Application Problems
	Troubleshoot Slow Response Times for .NET

