
Copyright © AppDynamics 2012-2014 Page 1

AppDynamics Pro Documentation
Version 3.8.x

AppDynamics for Java

Copyright © AppDynamics 2012-2014 Page 2

1. AppDynamics for Java . 5
1.1 Supported Environments and Versions for Java . 5
1.2 Install the App Agent for Java . 20

1.2.1 Multi-Agent Deployment for Java . 26
1.2.2 Java Server-Specific Installation Settings . 27

1.2.2.1 Apache Cassandra Startup Settings . 27
1.2.2.2 Apache Tomcat Startup Settings . 29

1.2.2.2.1 Tomcat as a Windows Service Configuration 33
1.2.2.3 Coherence Startup Settings . 34
1.2.2.4 GlassFish Startup Settings . 34
1.2.2.5 IBM WebSphere and InfoSphere Startup Settings 39
1.2.2.6 JBoss Startup Settings . 44
1.2.2.7 Jetty Startup Settings . 56
1.2.2.8 Mule ESB Startup Settings . 56
1.2.2.9 Oracle WebLogic Startup Settings . 57
1.2.2.10 OSGi Infrastructure Configuration . 61
1.2.2.11 Resin Startup Settings . 63
1.2.2.12 Solr Startup Settings . 66
1.2.2.13 Standalone JVM Startup Settings . 67
1.2.2.14 Tanuki Service Wrapper Configuration . 68
1.2.2.15 Tibco ActiveMatrix BusinessWorks Service Engine Configuration 69
1.2.2.16 SUN JDK 1.6 on Linux . 69

1.2.3 Enable SSL for Java . 69
1.2.4 Upgrade the App Agent for Java . 75
1.2.5 Uninstall the App Agent for Java . 76

1.3 Configure AppDynamics for Java . 76
1.3.1 Business Transaction Configuration Methodology for Java 76
1.3.2 Java Web Application Entry Points . 86

1.3.2.1 Servlet Entry Points . 87
1.3.2.1.1 Automatic Naming Configurations for Servlet-Based Business

 Transactions . 89
1.3.2.1.2 Custom Naming Configurations for Servlet-Based Business Transactions
 . 97
1.3.2.1.3 Custom Expressions for Naming Business Transactions 109
1.3.2.1.4 Advanced Servlet Transaction Detection Scenarios 110

1.3.2.2 Struts Entry Points . 123
1.3.2.3 Web Service Entry Points . 125
1.3.2.4 POJO Entry Points . 127
1.3.2.5 Spring Bean Entry Points . 135
1.3.2.6 EJB Entry Points . 138
1.3.2.7 JMS Entry Points . 140
1.3.2.8 Binary Remoting Entry Points for Apache Thrift . 142
1.3.2.9 CometD Support . 145
1.3.2.10 Mule ESB Support . 146
1.3.2.11 JAX-RS Support . 147
1.3.2.12 Spring Integration Support . 148
1.3.2.13 Instrumenting Apple WebObjects Applications . 151

1.3.3 Exclude Rule Examples for Java . 152
1.3.4 Configure Multi-Threaded Transactions for Java . 155

1.3.4.1 Configure End-to-End Message Transactions for Java 157
1.3.5 Configure Backend Detection for Java . 160

1.3.5.1 Configure Custom Exit Points for Java . 166

Copyright © AppDynamics 2012-2014 Page 3

1.3.5.2 Configurations for Custom Exit Points for Java . 172
1.3.5.3 HTTP Exit Points for Java . 182
1.3.5.4 JDBC Exit Points for Java . 188
1.3.5.5 Message Queue Exit Points for Java . 192
1.3.5.6 Web Services Exit Points for Java . 199
1.3.5.7 Cassandra Exit Points for Java . 200
1.3.5.8 RMI Exit Points for Java . 201
1.3.5.9 Thrift Exit Points for Java . 202

1.3.6 Configure Memory Monitoring for Java . 203
1.3.6.1 Configure Automatic Leak Detection for Java . 203
1.3.6.2 Configure and Use Object Instance Tracking for Java 206
1.3.6.3 Configure and Use Custom Memory Structures for Java 208

1.3.7 Configure Background Tasks for Java . 215
1.3.8 Import and Export Transaction Detection Configuration for Java 217
1.3.9 Getter Chains in Java Configurations . 222
1.3.10 Code Metric Information Points for Java . 227
1.3.11 Configure JMX Metrics from MBeans . 228

1.3.11.1 Create, Import or Export JMX Metric Configurations 235
1.3.11.2 Exclude JMX Metrics . 240
1.3.11.3 Exclude MBean Attributes . 241
1.3.11.4 Configure JMX Without Transaction Monitoring 242
1.3.11.5 Resolve JMX Configuration Issues . 242
1.3.11.6 MBean Getter Chains and Support for Boolean and String Attributes . . . 248

1.3.12 Percentile Metrics . 252
1.4 Monitor Java Applications . 254

1.4.1 Monitor JVMs . 254
1.4.1.1 JVM Crash Guard . 261

1.4.2 Monitor Java App Servers . 265
1.4.2.1 Monitor JMX MBeans . 267

1.4.3 Trace MultiThreaded Transactions for Java . 276
1.4.4 Service Endpoint Monitoring . 285
1.4.5 Monitoring in a Development Environment . 289

1.5 Troubleshoot Java Application Problems . 291
1.5.1 Troubleshoot Slow Response Times for Java . 291
1.5.2 Configure Diagnostic Sessions For Asynchronous Activity 306
1.5.3 Troubleshoot Java Memory Issues . 307

1.5.3.1 Troubleshoot Java Memory Leaks . 307
1.5.3.2 Troubleshoot Java Memory Thrash . 315

1.5.4 Detect Code Deadlocks for Java . 322
1.6 Tutorials for Java . 324

1.6.1 Overview Tutorials for Java . 324
1.6.1.1 Use AppDynamics for the First Time with Java . 325

1.6.2 Monitoring Tutorials for Java . 328
1.6.2.1 Tutorial for Java - Events . 328
1.6.2.2 Tutorial for Java - Flow Maps . 330
1.6.2.3 Tutorial for Java - Server Health . 334
1.6.2.4 Tutorial for Java - Transaction Scorecards . 338

1.6.3 Troubleshooting Tutorials for Java . 341
1.6.3.1 Tutorial for Java - Business Transaction Health Drilldown 341
1.6.3.2 Tutorial for Java - Exceptions . 341
1.6.3.3 Tutorial for Java - Slow Transactions . 347
1.6.3.4 Tutorial for Java - Troubleshooting using Events . 350

Copyright © AppDynamics 2012-2014 Page 4

1.7 Administer App Agents for Java . 357
1.7.1 Resolving Configuration Issues App Agent for Java . 357
1.7.2 App Agent for Java Configuration Properties . 359
1.7.3 Configure and Start an Agent Logging Session . 371
1.7.4 Configure App Agent for Java in z-OS or Mainframe Environments 372
1.7.5 App Agent for Java Performance Tuning . 373
1.7.6 Move an App Agent for Java Node to a New Application or Tier 375
1.7.7 App Agent for Java Diagnostic Data . 376
1.7.8 App Agent for Java Directory Structure . 378
1.7.9 IBM App Agent for Java . 379
1.7.10 Configure App Agent for Java for Batch Processes . 380
1.7.11 Configure App Agent for Java in Restricted Environments 382
1.7.12 Configure App Agent for Java on Multiple JVMs on the Same Machine that Serve

 Different Tiers . 383
1.7.13 Configure App Agent for Java on Multiple JVMs on the Same Machine that Serves

 the Same Tier . 384
1.7.14 Configure App Agent for Java to Use Existing System Properties 386
1.7.15 Administer App Agent for Java FAQ . 389
1.7.16 Configure App Agent for Java for JVMs that are Dynamically Identified 390
1.7.17 Add the Agent into an Embedded JVM . 390

Copyright © AppDynamics 2012-2014 Page 5

AppDynamics for Java
This information covers using AppDynamics for Java applications and environments. For general
information see and .AppDynamics Essentials AppDynamics Features

Tutorials

Monitor Java
Applications

Troubleshoot Java
Application Problems

Configure AppDynamics
for Java

Supported Environments and Versions for Java

Administer App Agents for Java

Supported Environments and Versions for Java

Supported Platform Matrix for the App Agent for Java
JVM Support
JVM Language Frameworks Support
Application Servers

Application Server Configuration
Message Oriented Middleware Support

Message Oriented Middleware Configuration
JDBC Drivers and Database Servers Support
Business Transaction Error Detection
NoSQL/Data Grids/Cache Servers Support

NoSQL/Data Grids/Cache Servers Configuration
Java Frameworks Support

Java Frameworks Configuration
RPC/Web Services API Support

RPC/Web Services API Framework Configuration

Supported Platform Matrix for the App Agent for Java

This page documents known environments in which the App Agent for Java has been used to
instrument applications. The App Agent for Java can target specific Java bytecode. This provides
wide-ranging flexibility, so if an environment is not listed here, this does not preclude the App
Agent for Java from being able to extract valuable performance metrics. Contact AppDynamics
Support or Sales for additional details.

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Essentials
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Features

Copyright © AppDynamics 2012-2014 Page 6

Notes:

A dash "-" in a table cell indicates that this column is not relevant to that particular
environment.
In cases where no version is provided, assume that all versions are supported. Contact
AppDynamics Support or Sales for confirmation.
For environments that require additional configuration, a separate table describing or linking
to configuration information follows the support matrix.
For environments supported by AppDynamics End User Monitoring, see Supported

.Environments and Versions - Web EUM

JVM Support

These are the known JVM environments in which the App Agent for Java has been used to
instrument applications.

Vendor Implem
entation

Version Operati
ng
System

Object
Instance
Trackin
g

Automat
ic Leak
Detectio
n

Custom Memory Structures

 Content
Inspecti
on

Access
Trackin
g

Require
s JVM
Restart
?

Oracle Java
HotSpot

7
Update
45+

Solaris
Sparc
64
Window
s Linux

- - - - -

BEA JRockit 1.5 - - Yes Yes Yes Yes

BEA JRockit 1.6, 1.7 - - Yes Yes - -

Oracle JRockit
JVM

28.1+ Linux
Intel 64
Window
s

- - - - -

IBM JVM 1.5.x,1.
6.x,
1.7.x

- - Yes Yes - -

SUN JVM 1.5, 1.6,
1.7

- Yes Yes Yes Yes -

Open
Source

OpenJD
K

1.6 Linux,
window
s,
everywh
ere

- Yes - - -

http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+-+Web+EUM#SupportedEnvironmentsandVersions-WebEUM-EUMandJava
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+-+Web+EUM#SupportedEnvironmentsandVersions-WebEUM-EUMandJava

Copyright © AppDynamics 2012-2014 Page 7

HP OpenV
MS

- - - - - - -

Notes:

Both JDKs and JREs Supported
For IBM JVM, a restart is required after configuring the custom memory structure.
All JVMs must be restarted after enabling the Automatic Leak Detection feature.

JVM Language Frameworks Support

No additional configuration is required for these frameworks.

Vendor JVM
Language
Framework

Version Correlation/
Entry
Points

Exit Points Transports Notes

Open
Source /
Typesafe

PlReactive
atform

Akka Actor 2.1 - 2.3 Yes Yes Netty Remoting
exit/entry
supported.
Persistenc
e
(experimen
tal module
in v2.3) is
not
currently
supported.

Open
Source

Groovy - Yes Yes

Open
Source /
Typesafe
Reactive
Platform

Play for
Scala

2.1 - 2.3 Yes - HTTP over
Netty

Includes
framework
specific
entry points

Open
Source /
Typesafe
Reactive
Platform

Spray.io - No No No Currently
not
supported

Pivotal Grails - - - -

The is a JVM-based runtime and collection of tools used to build Typesafe Reactive Platform reacti
 applications. This includes , , , and . ve Scala Play Akka Spray.io

Application Servers

http://typesafe.com/platform/
http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/
http://www.scala-lang.org/
http://www.playframework.com/
http://akka.io/
http://spray.io/

Copyright © AppDynamics 2012-2014 Page 8

These are the known application server environments in which the App Agent for Java has been
used to instrument applications. Some require additional configuration. Click the link on the server
or OSGi Runtime name in the following support matrix for information about additional

Application servers are usually found by theconfiguration required or related configuration topics.
App Agent for Java as an entry point.

Vendor Applicatio
n Server /
OSGi
Runtime

Version SOA
Protocol

RMI
Supported

JMX Entry
Points

Apache Felix - - - - Yes

Apache Sling - - - - Yes

Apache Tomcat 5.x, 6.x,7.x - - Yes

Apache Resin 1.x - 4.x - - - -

Adobe Cold
Fusion

8.x, 9.x - No - Yes

 Equinox - - - - Yes

Eclipse Jetty 6.x, 7.x - - - -

IBM InfoSphere 8.x - - - Yes

IBM WebSpher
e

6.1 JAX-WS - - Yes

IBM WebSpher
e

7.x JAX-WS Yes, detect
and
correlate

Yes for
WebSpher
e PMI

Yes

Open
Source

Liferay
Portal

- - - - -

 GlassFish
Enterprise
Server

2.x - - Yes Yes

Oracle GlassFish
Server and
GlassFish
Server
Open
Source
Edition

3.1+ - - Yes for
AMX

Yes

Oracle and
BEA

WebLogic
Server

9.x+ JAX-WS Yes, detect
and
correlate
for 10.x

Yes Yes

Copyright © AppDynamics 2012-2014 Page 9

 Application
Server
(OC4J)

- - Yes, detect
and
correlate
for 10.x

- Yes

- Grails, with
Tomcat
7.x,
Glassfish
v3,
Weblogic
12.1.1
(12c)

- - - -

- JBoss
Server

7+ - - - Yes

- JBoss
Server

4.x, 5.x - Yes, detect
and
correlate

- Yes

 JBoss AS 6.x, 7.x
standalone
)

 JBoss EAP 6.11, 6.2.0

Application Server Configuration

For application server environments that require additional configuration, this section provides
some information and links to topics that help you configure the environment. Environments in the
Application Server Support table that require additional configuration, link to the configuration table
below.

Application Server Topics for Required and Optional
Configuration

Apache Felix To configure Apache Felix for Glassfish
To configure Felix for Jira or Confluence
See also Unable to get metrics from the
Java App Server Agent on GlassFish

Apache Sling OSGi Infrastructure Configuration#To
configure Apache Sling

Apache Tomcat Apache Tomcat Startup Settings
Tomcat as a Windows Service
Configuration

Apache Resin Resin Startup Settings

http://docs.appdynamics.com/display/PRO14S/OSGi+Infrastructure+Configuration#OSGiInfrastructureConfiguration-ToconfigureApacheFelixforGlassfish
http://docs.appdynamics.com/display/PRO14S/OSGi+Infrastructure+Configuration#OSGiInfrastructureConfiguration-ToconfigureFelixforJiraorConfluence
http://docs.appdynamics.com/display/PRO14S/Resolve+JMX+Configuration+Issues#ResolveJMXConfigurationIssues-UnabletogetmetricsfromtheJavaAppServerAgentonGlassFish
http://docs.appdynamics.com/display/PRO14S/Resolve+JMX+Configuration+Issues#ResolveJMXConfigurationIssues-UnabletogetmetricsfromtheJavaAppServerAgentonGlassFish
http://docs.appdynamics.com/display/PRO14S/OSGi+Infrastructure+Configuration#OSGiInfrastructureConfiguration-ToconfigureApacheSling
http://docs.appdynamics.com/display/PRO14S/OSGi+Infrastructure+Configuration#OSGiInfrastructureConfiguration-ToconfigureApacheSling

Copyright © AppDynamics 2012-2014 Page 10

Apache Cold Fusion Configuration is required for transaction
discovery, see

Servlet Entry Points

Equinox To configure Eclipse Equinox

Eclipse Jetty Jetty Startup Settings

IBM InfoSphere IBM WebSphere and InfoSphere Startup
Settings

IBM WebSphere IBM WebSphere and InfoSphere Startup
Settings

Sun GlassFish Enterprise Server GlassFish JDBC connection pools can be
manually configured using MBean attributes
and custom JMX metrics

GlassFish Startup Settings
Modify GlassFish JVM Options

Oracle GlassFish Server including GlassFish Server Open Source
Edition

GlassFish Startup Settings
Modify GlassFish JVM Options

Oracle and BEA WebLogic Server Oracle WebLogic Startup Settings

JBoss Server JBoss Startup Settings

Message Oriented Middleware Support

These are the known message oriented middleware environments in which the App Agent for
Java has been used to instrument applications. Some require additional configuration. Click the
link on the messaging server name in the following support matrix for information about additional
configuration required or related configuration topics. Message oriented middleware servers are
usually found by the App Agent for Java as an entry point.

Vendor Messaging
Server

Version Protocol Correlatio
n/Entry
Points

Exit Points JMX

Apache ActiveMQ 5.x+ JMS 1.x Yes Yes Yes

Apache ActiveMQ 5.x+ STOMP No - Yes

Apache ActiveMQ 5.8.x+ AMQP 1.0 No - Yes

Apache ActiveMQ 5.x+ SOAP Yes - Yes

Apache Axis 1.x, 2.x JAX-WS Yes Yes -

http://docs.appdynamics.com/display/PRO14S/OSGi+Infrastructure+Configuration#OSGiInfrastructureConfiguration-ToconfigureEclipseEquinox
http://docs.appdynamics.com/display/PRO14S/Modify+GlassFish+JVM+Options
http://docs.appdynamics.com/display/PRO14S/Modify+GlassFish+JVM+Options

Copyright © AppDynamics 2012-2014 Page 11

Apache Apache
CXF

2.1 JAX-WS Yes Yes -

Apache Synapse 2.1 HTTP Yes Yes -

Fiorano Fiorano
MQ

 - - - -

IBM IBM MQ 6.x, 7.x - - - -

IBM IBM Web
Application
Server (WA
S)

6.1+, 7.x Embedded
JMS

- Yes -

IBM IBM
WebSpher
e MQ

- JMS Yes Yes -

 JBoss MQ 4.x - - - Yes

JBoss JBoss
Messaging

5.x - - - Yes

JBoss HornetQ - - - - Yes

 Open MQ - - - - -

Mulesoft Mule ESB 3.4 HTTP Yes Yes -

Oracle Oracle AQ - JMS - Yes -

Oracle /
BEA

WebLogic 9.x+ JMS 1.1 Yes Yes Yes

Progress SonicMQ - - - - -

Pivotal RabbitMQ - HTTP - Yes -

Rabbit RabbitMQ
Spring
Client

- - Yes Yes -

Spring Spring
Integration

2.2.0 JMS Yes Yes Yes

Message Oriented Middleware Configuration

For message oriented middleware environments that require additional configuration, this section
provides some information and links to topics that help you configure the environment.
 Environments in the Message Oriented Middleware Support table that require additional
configuration, link to the configuration table below.

Messaging Server Topics for Required and Optional
Configuration

Copyright © AppDynamics 2012-2014 Page 12

Apache ActiveMQ JMS Message Queue Exit Points

Apache Axis Default exclude rules exist for Apache Axis,
Axis2, and Axis Admin Servlets. See also,

Web Service Entry Points

Apache Synapse To enable correlation, set node property en
=true.able-soap-header-correlation

IBM MQ No additional configuration is required.

See also, Default Backends Discovered by the
App Agent for Java

IBM Web Application Server No additional configuration is required. See
also,

JMS Message Queue Exit Points

IBM WebSphere MQ IBM Websphere MQ Message Queue Exit
Points

Mule ESB Mule ESB Startup Settings
Mule ESB Support
See also HTTP Exit Points for Java

BEA WebLogic Oracle WebLogic Startup Settings

Pivotal RabbitMQ No additional configuration is required. See
also,

Default Backends Discovered by the App
Agent for Java and
RabbitMQ Message Queue Exit Points

RabbitMQ Spring Client No addition configuration is required, See also,

Message Queue Exit Points for Java

Spring Integration Spring Integration Support
See also, JMS Message Queue Exit Points

JDBC Drivers and Database Servers Support

These are the known JDBC driver and database server environments in which the App Agent for
Java has been used to instrument applications. AppDynamics can follow transactions using these
drivers to the designated database.

JDBC Vendor Driver Version Driver Type Database
Server

Database
Version

Apache 10.9.1.0 Embedded or
client

Derby -

http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-JMSMessageQueueExitPoints
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-EnableSoapHeaderCorrelation
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-EnableSoapHeaderCorrelation
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-JMSMessageQueueExitPoints
http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-IBMWebsphereMQMessageQueueExitPoints
http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-IBMWebsphereMQMessageQueueExitPoints
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackends
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackends
http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-RabbitMQMessageQueueExitPoints
http://docs.appdynamics.com/display/PRO14S/Message+Queue+Exit+Points+for+Java#MessageQueueExitPointsforJava-JMSMessageQueueExitPoints

Copyright © AppDynamics 2012-2014 Page 13

Apache - - Cassandra -

Progress DataDirect data connectivity
for ODBC and
JBDC driver
access, data
integration, and
SaaS and cloud
computing
solutions

- -

IBM JDBC 3.0
version 3.57.82
or JDBC 4.0
version 4.7.85

DB2 Universal
JDBC driver

DB2 9.x

IBM JDBC 3.0
version 3.66.46
or JDBC 4.0
version 4.16.53

DB2 Universal
JDBC driver

DB2 10.1

IBM - Type IV Informix -

Microsoft 4 Type II MS SQL Server 2012*

Oracle MySQL,
MySQL
Community

5.x Type II, Type IV MySQL 5.x

Open Source Connector/J
5.1.27

Type IV MySQL 5.x

Open Source - Type IV Postgres 8.x, 9.x

Oracle 9.x Type II, Type IV Oracle Database 8i+

Sybase jConnect Type IV Sybase -

Notes:

Type II is a C or OCI driver
Type IV is a thin database client and is a pure Java driver

Business Transaction Error Detection

AppDynamics App Agent for Java supports the following logging frameworks for business
transaction error detection:

 Log4j
 java.util.logging

If you are using a different logger, see .Configuring Error Detection Using Custom Loggers

NoSQL/Data Grids/Cache Servers Support

http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection#ConfigureErrorDetection-custom

Copyright © AppDynamics 2012-2014 Page 14

These are the known NoSQL, data grids and cache server environments in which the App Agent
for Java has been used to instrument applications. Some require additional configuration. Click the
link on the database, data grid or cache name in the following support matrix for information about
additional configuration required or related configuration topics.

Vendor Database/Data
Grid/Cache

Version Correlation/Entry
Points

JMX

Apache Casandra (Data
Stax, REST) and
Cassandra
CQL3

- Correlation Yes

Apache Apache Lucene -
Apache Solr

1.4.1 Entry Points Yes

JBoss JBoss Cache
TreeCache

- - -

Terracotta EhCache - - -

Open Source Memcached - - -

Open Source MongoDB - - -

Oracle Coherence 3.7.1 Custom-Exit Yes

JBoss Infinispan 5.3.0+ Correlation -

NoSQL/Data Grids/Cache Servers Configuration

For NoSQL, data grids, and cache server environments that require additional configuration, this
section provides some information and links to topics that help you configure the environment.
 Environments in the NoSQL/Data Grids/Cache Servers Support table that require additional
configuration, link to the configuration table below.

Database/Data Grid/Cache Topics for Required or Optional
Configuration

Apache Cassandra (DataStax, REST) and
Cassandra CQL3

Cassandra Exit Points for Java
Apache Cassandra Startup Settings
Default Backends Discovered by the App
Agent for Java

Apache Lucene - Apache Solr Solr Startup Settings

JBoss JBoss Startup Settings

Terracotta EhCache EhCache Exit Points

Open Source Memcached Memcached Exit Points

Open Source MongoDB Configurations for Custom Exit Points for
Java

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Configurations+for+Custom+Exit+Points+for+Java#ConfigurationsforCustomExitPointsforJava-EhCacheExitPoints
http://docs.appdynamics.com/display/PRO14S/Configurations+for+Custom+Exit+Points+for+Java#ConfigurationsforCustomExitPointsforJava-MemcachedExitPoints

Copyright © AppDynamics 2012-2014 Page 15

Oracle Coherence Coherence Startup Settings

Java Frameworks Support

These are the known Java framework environments in which the App Agent for Java has been
used to instrument applications. Some require additional configuration. Click the link on the java
framework name in the following support matrix for information about additional configuration
required or related configuration topics.

Vendor Framewo
rk

Version SOA
protocol
(WebSer
vices)

Auto
Naming

Entry
Points

Exit
Points

Detection

Adobe BlazeDS - HTTP
and JMS
adaptor

- Yes -

Adobe ColdFusi
on

8.x, 9.x - - Yes - Configura
tion
required
for
transactio
n
discovery

Apache Cassandr
a with
Thrift fra
mework

- - - Yes Yes Apache
Thrift
Entry and
Exit
points are
detected

Apache Struts 1.x, 2.x - - Yes Struts
Actions
are
detected
as entry
points,
struts
invocatio
n handler
is
instrumen
ted

Apache Tapestry 5 - - Yes - Not by
default

 Wicket - - No Yes - Not by
default

Copyright © AppDynamics 2012-2014 Page 16

Apple WebObje
cts

5.4.3 HTTP Yes Yes - Yes

 CometD 2.6 HTTP Yes Yes - -

Eclipse RCP
(Rich
Client
Platform)

- - - - - -

Google Google
Web
Toolkit
(GWT)

2.5.1 HTTP Yes Yes - -

JBoss JBossWS
Native
Stack

4.x, 5.x Native
Stack

- - - -

Open
Source

Direct
Web
Remoting
(DWR)

- - - - - -

Open
Source

Enterpris
e Java

 (EBeans
JB)

2.x, 3.x - - Yes - -

Open
Source

Grails - - - Yes - Not by
default

Open
Source

Hibernate
JMS Liste
ners

1.x - - - - -

Open
Source

Java
Abstract
Windowin
g Toolkit
(AWT)

- - - - - -

Open
Source

Java
Server
Faces (J
SF)

1.x - Yes Yes - Not by
default

Open
Source

Java
Server
Pages

2.x - Yes - - Yes

Copyright © AppDynamics 2012-2014 Page 17

Open
Source

Java
Servlet
API

2.x - - - - -

Open
Source

Jersey 1.x, 2.x REST,
JAX-RS

Yes Yes No Not by
default

Open
Source -
Google

AngularJ
S

- - - Yes - -

Oracle Coherenc
e with
Spring
Beans

2.x, 3.x - - - - -

Oracle Swing
(GUI)

- - - - - -

Oracle WebCent
er

10.0.2,10
.3.0

- - - - -

Open
Source

JRuby
HTTP

- - - Yes - Not by
default

Spring Spring
MVC

- - - Yes - Not by
default

Java Frameworks Configuration

For the Java framework environments that require additional configuration, this section provides
some information and links to topics that help you configure the environment. Environments in the
Java Frameworks Support table that require additional configuration, link to the configuration table
below.

Java Framework Topics for Required or Optional
Configuration

Adobe BlazeDS Message Queue Exit Points for Java

Adobe ColdFusion Configuration is required for transaction
discovery

Java Web Application Entry Points
Servlet Entry Points

Apache Cassandra with Thrift framework No additional configuration is required. See
also,

Default Backends Discovered by the App
Agent for Java

Apache Struts Struts Entry Points

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-Defaults
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-Defaults

Copyright © AppDynamics 2012-2014 Page 18

Apache Tapestry Java Web Application Entry Points
Servlet Entry Points

Wicket Java Web Application Entry Points
Servlet Entry Points

Apple WebObjects Business transaction naming can be
configured via getter-chains, see

Getter Chains in Java Configurations
Identify Transactions Based on POJO
Method Invoked by a Servlet

CometD See also, HTTP Exit Points for Java

Open Source Enterprise Java Beans (EJB) EJB Entry Points

Open Source Hibernate JMS Listeners No additional configuration is required. See
also,

Advanced Options in Call Graphs

Open Source Java Server Faces (JSF) Java Web Application Entry Points and Ser
vlet Entry Points

Open Source Java Server Pages Servlet Entry Points

Open Source Jersey JAX-RS Support and node properties:
rest-num-segments
rest-transaction
rest-uri-segment-scheme

Open Source JRuby HTTP Java Web Application Entry Points
Servlet Entry Points

Spring MVC Java Web Application Entry Points
Servlet Entry Points

RPC/Web Services API Support

These are the known Java framework environments in which the App Agent for Java has been
used to instrument applications. Some require additional configuration. Click the link on the RPC,
web services or API framework name in the following support matrix for information about
additional configuration required or related configuration topics.

Vendor RPC/W
eb
Service
s API
Framew
ork

Version SOA
Protocol
-
WebSer
vices

Auto
Naming

Correlati
on/Entry
Points

Exit
Points

Configur
able BT
Naming
Properti
es

Detectio
n

Apache Apache
CXF

2.1 JAX-WS Yes Yes Yes Yes Yes

http://docs.appdynamics.com/display/PRO14S/Call+Graphs#CallGraphs-AdvancedOptions
http://docs.appdynamics.com/display/PRO14S/Call+Graphs
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-num
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-transaction
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-uri

Copyright © AppDynamics 2012-2014 Page 19

Apache Apache
Commo
ns

- HTTP
Client

Yes Yes Yes - Yes

Apache Apache
Thrift

- - Yes Yes Yes Yes Yes

IBM WebSp
here

6.x JAX-RP
C

- - - - -

IBM WebSp
here

7.x JAX-RP
C

- - - - -

IBM Websph
ere

7.x IIOP - - - - -

JBoss JBoss 4.x, 5.x RMI Yes Yes Yes Yes Yes

Open
Source

java.net.
Http

- HTTP Yes - Yes Yes Yes

Oracle GlassFi
sh
Metro

- JAX-WS - - - - -

Oracle GlassFi
sh
Metro
with
Grails

- JAX-WS - Yes - - Not by
Default

Oracle Oracle
Applicati
on
Server

ORMI - no - - - -

Oracle WebLog
ic

10.x T3, IIOP Yes Correlati
on: Yes,
Entry:
No

Yes - Yes

Oracle WebLog
ic

9.x, 10.x JAX-RP
C

- - - - -

Sun Sun
RMI

- IIOP - Not by
Default

- - -

Sun Sun
RMI

- JRMP - By
Default

Yes host/por
t

Yes

- Web
Service
s

- SOAP
over
HTTP

- Yes Yes - -

Copyright © AppDynamics 2012-2014 Page 20

RPC/Web Services API Framework Configuration

For the RPC and web service API environment that require additional configuration, this section
provides some information and links to topics that help you configure the environment.
 Environments in the RPC/Web Services API Framework Support table that require additional
configuration, link to the configuration table below.

RPC/Web Services API Topics for Required or Optional
Configuration

Apache Commons HTTP Exit Points for Java

Apache Thrift Binary Remoting Entry Points for Apache
Thrift
Default Backends Discovered by the App
Agent for Java

IBM WebSphere IBM WebSphere and InfoSphere Startup
Settings,
App Agent for Java on z-OS or Mainframe
Environments Configuration See also,

Unable to browse MBeans on
WebSphere Application Server,
Default configuration excludes
WebSphere classes

JBoss JBoss Startup Settings

Open Source java.net.Http HTTP Exit Points for Java

Oracle WebLogic Oracle WebLogic Startup Settings
Default configuration excludes WebLogic
classes

Web Services Create Match Rules for Web Services
Web Service Entry Points
Web Services Exit Points for Java

Install the App Agent for Java

Overview of the App Agent for Java Installation Process
Planning for Agent Installation

Important Files
To Install the Java App Server Agent

1. Download and unzip the App Agent for Java
2. Add the agent properties as a 'javaagent' argument to your JVM
3. Configure how the agent connects to the Controller
4. (Only for Multi-tenant mode or SaaS Installations): Configure Agent account
information
5. Configure how the agent identifies the AppDynamics business application,
tier, and node.

Automatic Naming for Application, Tier, and Node
Additional Installation Scenarios

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points+for+Java#ConfigureCustomExitPointsforJava-DefaultBackendsDiscoveredbytheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+on+z-OS+or+Mainframe+Environments+Configuration
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+on+z-OS+or+Mainframe+Environments+Configuration
http://docs.appdynamics.com/display/PRO14S/Resolve+JMX+Configuration+Issues#ResolveJMXConfigurationIssues-UnabletobrowseMBeansonWebSphereApplicationServer
http://docs.appdynamics.com/display/PRO14S/Resolve+JMX+Configuration+Issues#ResolveJMXConfigurationIssues-UnabletobrowseMBeansonWebSphereApplicationServer
http://docs.appdynamics.com/display/PRO14S/Configure+Multi-Threaded+Transactions+for+Java#ConfigureMulti-ThreadedTransactionsforJava-DefaultconfigurationexcludesWebSphereclasses
http://docs.appdynamics.com/display/PRO14S/Configure+Multi-Threaded+Transactions+for+Java#ConfigureMulti-ThreadedTransactionsforJava-DefaultconfigurationexcludesWebSphereclasses
http://docs.appdynamics.com/display/PRO14S/Configure+Multi-Threaded+Transactions+for+Java#ConfigureMulti-ThreadedTransactionsforJava-DefaultconfigurationexcludesWebLogicclasses
http://docs.appdynamics.com/display/PRO14S/Configure+Multi-Threaded+Transactions+for+Java#ConfigureMulti-ThreadedTransactionsforJava-DefaultconfigurationexcludesWebLogicclasses
http://docs.appdynamics.com/display/PRO14S/Web+Service+Entry+Points#WebServiceEntryPoints-CreateMatchRulesforWebServices

Copyright © AppDynamics 2012-2014 Page 21

6. Verify agent configuration
7. Verify successful installation and reporting

a. Verify agent installation
b. Verify that the agent is reporting to the Controller

Example Configuration: App Agent for Java Deployment on a Single JVM
Learn More

The AppDynamics App Agent for Java identifies and tracks business transactions, captures
statistics and diagnostic data, and analyzes and reports data to the Controller. The App Agent for
Java uses to instrument a JVM and it runs as a part of the JVMdynamic bytecode injection
process.

Caution: The AppDynamics Agent for Java may fail if there are other Application Performance
Management (APM) products installed in the same JVM. They can coexist as long as the other
APM does not interfere with the AppDynamics Agent for Java class transformations. We
discourage the simultaneous use of other Byte Code Injection (BCI) agents.

Overview of the App Agent for Java Installation Process

Installing the App Agent for Java involves adding it as a javaagent (Java Programming Language
) on your JVM and setting up connection and identifying parameters for it to report data toAgent

the Controller.

Install the App Agent for Java as the same user or administrator of the JVM. Otherwise the agent
may not have the correct write permissions for the system. The agent directories must have write
permission so that AppDynamics can update the logs and other agent files.

Planning for Agent Installation

Before installing the App Agent for Java, be prepared with the following information.

 Planning Item Description

Where is the startup script for
the JVM?
If using a Java service
wrapper, you need to know
the location of the wrapper
configuration.

This is where you can add
startup arguments
in the script file and system
properties, if needed.

What host and port is the
Controller running on?

For SaaS customers,
AppDynamics provides this
information to you. For
on-premise Controllers, this
information is configured
during Controller installation.
See (Install the Controller on

 or Linux Install the Controller
).on Windows

http://download.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://download.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://download.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://docs.appdynamics.com/display/PRO14S/Install+the+Controller+on+Linux
http://docs.appdynamics.com/display/PRO14S/Install+the+Controller+on+Linux
http://docs.appdynamics.com/display/PRO14S/Install+the+Controller+on+Windows
http://docs.appdynamics.com/display/PRO14S/Install+the+Controller+on+Windows

Copyright © AppDynamics 2012-2014 Page 22

To what AppDynamics
business application does this
JVM belong?

Usually, all JVMs in your
distributed application
infrastructure belong to the
same AppDynamics business
application. You assign a
name to the business
application. For details see Lo

.gical Model

To what AppDynamics tier
does this JVM belong?

You assign a name to the tier.
For details see .Logical Model

Important Files

In addition to the JVM startup script file, two other files are important during installation:

The -javaagent argument uses the fully-qualified path of the javaagent.jar file. No separate
classpath arguments need to be added.

The <agent_home>/conf/controller-info.xml file is where you add the configuration
mentioned in the planning list.

To Install the Java App Server Agent

1. Download and unzip the App Agent for Java

Download the App Agent for Java ZIP file from .AppDynamics Download Center
Extract the ZIP file to the destination directory as the same user or administrator of the JVM.
Take note of the following:

Extract the agent to a directory that is outside of your container
All files should be readable by the agent
Runtime directory should be writable by the agent

Note: Do not unzip/install the agent into to the ..\tomcat\webapps directory. By default Tomcat tries
to undeploy and deploy files under the webapps folder. To avoid the possibility that Tomcat will
occasionally not restart, we recommend installing the agent to a directory outside of tomcat, such
as \usr\local\agentsetup\AppServerAgent.

2. Add the agent properties as a 'javaagent' argument to your JVM

This step adds the agent to the startup script of your application server. Use the server-specific
instructions below to add this argument for different Application Server JVMs:

3. Configure how the agent connects to the Controller

Configure properties for the Controller host name and its port number.
You can configure these two properties using either the controller-info.xml file or the JVM
startup script:

Configure using
controller-info.xml

Configure using
System Properties

Required Default

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://download.appdynamics.com/

Copyright © AppDynamics 2012-2014 Page 23

<controller-host> -Dappdynamics.contr
oller.hostName

Yes None

<controller-port> -Dappdynamics.contr
oller.port

Yes For On-premise
Controller
installations: By
default, port 8090 is
used for HTTP and
8181 is used for
HTTPS
communication.
For SaaS Controller

 By default,service:
port 80 is used for
HTTP and 443 is
used for HTTPS
communication.

Optional settings for Agent-Controller communication

To configure the Java Agent to use SSL, see App Agent for Java Configuration Properties
See for instructions on Enable SSL (Java) new SSL configuration in 3.7.6
To configure the Java Agent to use proxy settings see App Agent for Java Configuration
Properties

4. : Configure Agent account information(Only for Multi-tenant mode or SaaS Installations)

This step is required only when the AppDynamics Controller is configured in Controller
 or when you .Tenant Mode Use a SaaS Controller

 Skip this step if you are using single-tenant mode, which is the default in an on-premise
installation.

Specify the properties for Account Name and Account Key. This information is provided in
the Welcome email from the AppDynamics Support Team. You can also find this
information in the <controller-install>/initial_account_access_info.txt file.

Configure using
controller-info.xml

Configure using
System Properties

Required Default

<account-name> -Dappdynamics.agent
.accountName

Required only if your
Controller is
configured for multi-te

 or nant mode
your controller is
hosted.

None.

<account-access-key
>

-Dappdynamics.agent
.accountAccessKey

Required only if your
Controller is
configured for multi-te

 or nant mode
your controller is
hosted.

None.

http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode
http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode
http://docs.appdynamics.com/display/PRO14S/Use+a+SaaS+Controller
http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode
http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode
http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode
http://docs.appdynamics.com/display/PRO14S/Controller+Tenant+Mode

Copyright © AppDynamics 2012-2014 Page 24

5. Configure how the agent identifies the AppDynamics business application, tier, and node.

To better understand agents and how they relate to business applications, tiers, and nodes see
 and .Logical Model Name Business Applications, Tiers, and Nodes

You can configure these properties using either the controller-info.xml file or JVM startup script
options. Use these guidelines when configuring agents:

Configure items that are common for all the nodes in the controller-info.xml file.
Configure information that is unique to a node in the startup script.

Configure using
controller-info.xml

Configure using
System Properties

Required Default

<application-name> -Dappdynamics.agent
.applicationName

Yes, unless you use
automatic naming

None

<tier-name> -Dappdynamics.agent
.tierName

Yes, unless you use
automatic naming

None

<node-name> -Dappdynamics.agent
.nodeName

Yes, unless you use
automatic naming

None

Automatic Naming for Application, Tier, and Node

The App Agent for Java javaagent command accepts an argument named uniqueID that
AppDynamics uses to automatically name the node and tier for this agent. For example, using this
command argument AppDynamics will name the node and tier "my-app-jvm1":

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

When uniqueID is used and the application name is not provided either through the system
property or in the controller-info.xml, AppDynamics creates a new business application called
"MyApp".

The naming mechanism is used by the Agent Download Wizard process. See .Quick Install

Additional Installation Scenarios

Refer to the links below for typical installation scenarios, especially for cases where there are
multiple JVMs on the same machine:

Configure App Agent for Java on Multiple JVMs on the Same Machine that Serves the Same
Tier

Configure App Agent for Java on Multiple JVMs on the Same Machine that Serve Different
Tiers

Configure App Agent for Java to Use Existing System Properties

App Agent for Java on z-OS or Mainframe Environments Configuration

Configure App Agent for Java for Batch Processes

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes
http://docs.appdynamics.com/display/PRO14S/Quick+Install
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+on+z-OS+or+Mainframe+Environments+Configuration

Copyright © AppDynamics 2012-2014 Page 25

Add the Agent into an Embedded JVM

6. Verify agent configuration

Ensure that you have added -javaagent argument in your JVM startup script. This is not a -D
system property but a different standard argument for all JVMs v1.5 and higher.

Ensure that you have added all mandatory items either in the Agent controller-info.xml file or
in the JVM startup script file.

The user running the JVM process/application server process is the user accessing the Java
Agent installation.

7. Verify successful installation and reporting

a. Verify agent installation

After a successful install, your agent logs, located at <agent_home>/logs, should contain following
message:

Started AppDynamics Java Agent Successfully

 If the agent log file is not present, the App Agent for Java may not be accessing the javaagent
command properties. The application server log file where STDOUT is logged will have the
fallback log messages, for further troubleshooting.

b. Verify that the agent is reporting to the Controller

Use the AppDynamics UI, to verify that the Java Agent is able to connect to the Controller:

Point your browser to: http://<controller-host>:<controller-port>/controller
Provide the admin credentials to log into the AppDynamics UI.
Select the application. In the left navigation pane, click Servers -> App Servers -> <tier> ->

. Click the Agents tab and App Server Agent subtab. An agent successfully reporting<node>
to the Controller will be listed and the Reporting property shows an "up" arrow symbol. For
more details see .Verify App Agent-Controller Communication
When deploying multiple agents for the same tier, see if you get the exact number of nodes
reporting in the same tier.

Example Configuration: App Agent for Java Deployment on a Single JVM

The following example shows a sample deployment of the App Agent for Java for the ACME
Bookstore.

Add the javaagent argument to the start-up script of the JVM:

java -javaagent:/home/appdynamics/AppServerAgent/javaagent.jar

Define the five mandatory items for agent configuration in the Agent controller-info.xml file:

http://docs.appdynamics.com/display/PRO14S/Verify+App+Agent-Controller+Communication

Copyright © AppDynamics 2012-2014 Page 26

<controller-info>
 <controller-host>192.168.1.20</controller-host>
 <controller-port>8090</controller-port>
 <application-name>ACMEOnline</application-name>
 <tier-name>InventoryTier</tier-name>
 <node-name>Inventory1</node-name>

</controller-info>

Learn More

App Agent for Java Configuration Properties
Uninstall the App Agent for Java
Logical Model

Multi-Agent Deployment for Java
Deployment Procedure

To Deploy Java App Agents
To Deploy Standalone Machine Agents

Sample Deployment Solutions
Learn More

This topic describes the high-level procedures for deploying multiple AppDynamics app agents
and machine agents on Java platforms.

Deployment Procedure

To Deploy Java App Agents

1. Download the latest agent ZIP file from .http://download.appdynamics.com/

2. Update deployment artifacts to use the downloaded agent.

3. Unzip the downloaded app agent file on the destination machine in the desired app agent
directories.

4. Modify the app-agent-config.xml file with any custom settings for the node, tier or app.

5. Do one of the following for each application server:

Set the application name, tier name, node name, controller host and controller port
properties in the <Agent_Installation_Directory>/conf/controller-info.xml file.
OR
Set these properties as system startup properties in the application server startup script
using the -D option.
See for more information about theseApp Agent for Java Configuration Properties
properties.

6. Restart the application servers to make the changes take effect.

See for detailed instructions on installing the app agent.Install the App Agent for Java

http://docs.appdynamics.com/display/PRO14S/Logical+Model
http://download.appdynamics.com/

Copyright © AppDynamics 2012-2014 Page 27

To Deploy Standalone Machine Agents

1. Download the latest AppDynamics Standalone Machine Agent ZIP file from http://download.app
.dynamics.com/

2. Unzip the downloaded file on the destination machine in the desired directories.

3. Modify the <Machine_Agent_Installation_Directory>/conf/controller-info.xml files to set the
application name, tier name, node name, Controller host and Controller port properties. Note that
there are no -D settings allowed for standalone machine agents, unlike app agents.

4. Configure the startup script for the machine to start the machine agent every time the machine
reboots. For example, you could add the machine startup command to .bashrc.

To handle large values for metrics, run the standalone machine agent using a 64-bit JDK.

Sample Deployment Solutions

You can download some sample solutions that our customers have created to perform multi-agent
AppDynamics rollouts.

Use these samples for ideas on how to automate AppDynamics agent deployment for your
environment. All of these samples deploy the agents independently of the application deployment.

ChefExample1 and ChefExample2 use Opscode Chef recipes to automate deployment on
Java platforms. See for information about Chef.http://www.opscode.com/chef/
JavaExample1 uses a script, configuration file and package repository.

Click below to download the samples.

ChefExample1.tar
ChefExample2.tar
JavaExample1.tar

Learn More

https://github.com/edmunds/cookbook-appdynamics

Java Server-Specific Installation Settings

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

See .Name Business Applications, Tiers, and Nodes
Apache Cassandra Startup Settings

To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to the cassandra (Linux) or cassandra.bat (Windows) file.

http://download.appdynamics.com/
http://download.appdynamics.com/
http://www.opscode.com/chef/
http://docs.appdynamics.com/download/attachments/20187355/ChefExample1.tar?version=1&modificationDate=1394226210000&api=v2
http://docs.appdynamics.com/download/attachments/20187355/ChefExample2.tar?version=1&modificationDate=1394226210000&api=v2
http://docs.appdynamics.com/download/attachments/20187355/JavaExample1.tar?version=1&modificationDate=1394226210000&api=v2
https://github.com/edmunds/cookbook-appdynamics
http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes

Copyright © AppDynamics 2012-2014 Page 28

To add the javaagent command in a Windows environment

1. Open the apache-cassandra-x.x.x\bin\cassandra.bat file.

2. Add the AppDynamics javaagent to the JAVA_OPTS variable. Make sure to include the drive in
the full path to the App Server agent directory.

-javaagent:<agent_home>\javaagent.jar

For example:

set JAVA_OPTS=-ea
 -javaagent:C:\appdynamics\agent\javaagent.jar
 -javaagent:"%CASSANDRA_HOME%\lib\jamm-0.2.5.jar
 . . .
 . . .

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

3. Restart the Cassandra server. The Cassandra server must be restarted for the changes to take
effect.

To add the javaagent command in a Linux environment

1. Open the apache-cassandra-x.x.x/bin/cassandra.in.sh file.

2. Add the javaagent argument at the top of the file:

JVM_OPTS=-javaagent:<agent_home>/javaagent.jar

For example:

JVM_OPTS=-javaagent:/home/software/appdynamics/agent/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

Copyright © AppDynamics 2012-2014 Page 29

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

3. Restart the Cassandra server for the changes to take effect.
Apache Tomcat Startup Settings

To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your Tomcat catalina.sh or catalina.bat file.

If you are using Tomcat as a Windows service, see .Tomcat as a Windows Service Configuration

To add the javaagent command in a Windows environment

1. Open the file, located at <apache_version_tomcat_install_dir>\bin.catalina.bat

2. Add following javaagent argument to the beginning of your application server start script.

if "%1"=="stop" goto skip_agent
set JAVA_OPTS=%JAVA_OPTS% -javaagent:"Drive:<agent_home>\javaagent.jar"
:skip_agent

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"Drive:<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path to the App Server Agent installation directory,
including the drive. For details see the screen captures.

2a. Sample Tomcat 5.x catalina.bat file

Copyright © AppDynamics 2012-2014 Page 30

2b. Sample Tomcat 6.x catalina.bat file

Copyright © AppDynamics 2012-2014 Page 31

3. Restart the application server. The application server must be restarted for the changes to take
effect.

To add the javaagent command in a Linux environment

1. Open the catalina.sh file located at <apache_version_tomcat_install_dir>/bin).

2. Add the following commands at the beginning of your application server start script.

if ["$1" = "start" -o "$1" = "run"]; then
export JAVA_OPTS="$JAVA_OPTS -javaagent:agent_install_dir/javaagent.jar"
fi

The javaagent argument references the full path to the App Server Agent installation directory.

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

Copyright © AppDynamics 2012-2014 Page 32

For details see the screen captures.

2a. Sample Tomcat 5.x catalina.sh file

2b. Sample Tomcat 6.x catalina.sh file

Copyright © AppDynamics 2012-2014 Page 33

3. Restart the application server. The application server must be restarted for the changes to take
effect.
Tomcat as a Windows Service Configuration

To install the javaagent as a Tomcat Windows service

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your Tomcat properties.

If you are not running Tomcat as a Windows service, see .Apache Tomcat Startup Settings

To install the javaagent as a Tomcat Windows service

These instructions apply to Apache Tomcat 6.x or later versions.

1. Ensure that you are using administrator privileges.

2. Click .Programs -> Apache Tomcat

3. Run .Configure Tomcat

4. Click the tab.Java

5. In the add:Java Options

Copyright © AppDynamics 2012-2014 Page 34

-javaagent:"<agent_home\javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

For details see the following screenshot.

6. Restart the Tomcat service. The application server must be restarted for the changes to take
effect.
Coherence Startup Settings

In the cache-server.sh file update the following:

$JAVAEXEC -server -showversion $JAVA_OPTS -javaagent:<agent_home>/javaagent.jar
-cp "$COHERENCE_HOME/lib/coherence.jar" com.tangosol.net.DefaultCacheServer $1

GlassFish Startup Settings

Copyright © AppDynamics 2012-2014 Page 35

To add the javaagent command in a GlassFish 3.0 environment
To add the javaagent command in a GlassFish 3.1 environment
To verify the Agent configuration
About Glassfish AMX Support

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.

To add the javaagent command in a GlassFish 3.0 environment

1. If you are using , first configure the OSGi containers. For details see GlassFish v3.0 OSGi
.Infrastructure Configuration

2. Log into the where you want to install the App Server Agent.GlassFish domain

3. In the left navigation tree section, click . The ApplicationCommon Tasks Application Server
Server Settings dialog opens.

4. In the tab, click .JVM Settings JVM Options

5. Click and add an entry for the javaagent argument. The javaagent argumentAdd JVM Option
contains the full path, including the drive, of the App Server Agent installation directory.

-javaagent:<drive>:\<agent_home>\javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

Copyright © AppDynamics 2012-2014 Page 36

6. Restart the application server. The application server must be restarted for the changes to take
effect.

To add the javaagent command in a GlassFish 3.1 environment

1. If you are using , first configure the OSGi containers. For details see GlassFish v3.0 OSGi
.Infrastructure Configuration

2. Log into the where you want to install the App Server Agent.GlassFish domain

Note: Remember to turn on remote administration by entering the following command from the
<Controller_home>/appserver/glassfish/bin directory:

asadmin enable-secure-admin

3. In the section in the left navigation tree, click and then click Configurations server-config JVM
.Settings

4. On the tab, click .JVM Settings JVM Options

Copyright © AppDynamics 2012-2014 Page 37

5. Click and add an entry for the javaagent argument as follows:Add JVM Option

For Windows:

-javaagent:<Drive Letter>:<agent install location>\javaagent.jar

For Linux:

-javaagent:<agent install location>/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

6. Restart the application server. The application server must be restarted for the changes to take
effect.

Copyright © AppDynamics 2012-2014 Page 38

To verify the Agent configuration

To verify this configuration, look at the domain.xml file located at
<glassfish_install_dir>\domains\<domain_name>. The domain.xml file should have an entry as
shown in the following screenshot.

Copyright © AppDynamics 2012-2014 Page 39

About Glassfish AMX Support

AppDynamics supports Glassfish AMX MBeans.

Set the boot-amx node property to enable AMX MBeans. See .boot-amx

You will see the AMX domain in the MBean Browser in the JMX tab of the node dashboard.
IBM WebSphere and InfoSphere Startup Settings

To add the javaagent command in a WebSphere 7.x and InfoSphere 8.x environment
To add the javaagent command in a WebSphere 6.x environment
To add the javaagent command in a WebSphere 5.x environment
To verify the Agent configuration
Security Requirements
Running WebSphere with Security Enabled

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.

To add the javaagent command in a WebSphere 7.x and InfoSphere 8.x environment

1. Log in to the console of the WebSphere node where you want to install the AppAdministrator
Server Agent.

2. In the Administration Console click .Servers

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-boot-amx

Copyright © AppDynamics 2012-2014 Page 40

3. Expand and click .Server Type WebSphere application servers

4. Click the name of your server.

5. Expand and click .Java and Process Management Process Definition

6. Under the section, click .Additional Properties Java Virtual Machine

7. Enter the javaagent option with the full path to the AppDynamics javaagent.jar file in the Generi
 field.c JVM arguments

For Windows:

-javaagent:<Drive Letter>:<agent install location>\javaagent.jar

For Linux:

-javaagent:<agent install location>/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

8. Click .OK

To add the javaagent command in a WebSphere 6.x environment

1. Log in to the console of the WebSphere node where you want to install the AppAdministrator
Server Agent.

2. In the left navigation tree, click .Servers -> Application servers

3. Click the name of your server in the list of servers.

Copyright © AppDynamics 2012-2014 Page 41

4. In the " " tab, click .Configuration Java and Process Management

Copyright © AppDynamics 2012-2014 Page 42

5. Enter the javaagent option with the full path to the AppDynamics javaagent.jar file in the Generi
 field.c JVM arguments

For Windows:

-javaagent:<Drive Letter>:<agent install location>\javaagent.jar

For Linux:

-javaagent:<agent install location>/javaagent.jar

Copyright © AppDynamics 2012-2014 Page 43

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

8. Click .OK

To add the javaagent command in a WebSphere 5.x environment

1. Log in to the console of the WebSphere node where you want to install the AppAdministrator
Server Agent.

2. In the Administrative Console, click .Servers

3. Select .Application Servers

4. Click the name of your server.

5. Under , select .Additional Properties Process Definition

6. On the next page, under select .Additional Properties Java Virtual Machine

7. Enter the javaagent option with the full path to the AppDynamics javaagent.jar file in the Generi
 field.c JVM arguments

Copyright © AppDynamics 2012-2014 Page 44

For Windows:

-javaagent:<Drive Letter>:<agent install location>\javaagent.jar

For Linux:

-javaagent:<agent install location>/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>

8. Click .OK

To verify the Agent configuration

Verify the configuration settings by checking the server.xml file of the WebSphere node where you
installed the App Server Agent. The server.xml file should have this entry:

<jvmEntries ...
genericJvmArguments='-javaagent:E:\test1\AppServerAgent\javaagent.jar'
disableJIT="false"/>

Security Requirements

Full permissions are required for the agent to function correctly with WebSphere. Grant all
permissions on both the server level and the profile level.

Running WebSphere with Security Enabled

If you want to run WebSphere while J2EE security or Global security is enabled, you need to make
changes to WebSphere's server.policy file to prevent problems within the interaction between
WebSphere and the Java agent. Make the change listed below to the server.policy file, which is
located in <websphere_home>/properties or in <websphere_profile_home>/properties.
Add the following block to the WebSphere server.policy file:

grant codeBase "file:* AGENT_DEPLOYMENT_DIRECTORY */-"
{
permission java.security.AllPermission;
};

WebSphere in z-OS or Mainframe Environments

See .Configure App Agent for Java in z-OS or Mainframe Environments

Copyright © AppDynamics 2012-2014 Page 45

1.
2.

3.
a.

JBoss Startup Settings

To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment for JBoss 5.x
To add the javaagent command in a Linux environment for JBoss AS 6.x
To add the javaagent command in a Linux environment for JBoss EAP 6.1.1, EAP 6.2.0, and
JBoss AS 7.0.x (standalone)
To add the javaagent command in a Linux environment for JBoss 7.1.1
To add the javaagent command in a Linux environment for JBoss AS 7.x
To add the javaagent command in a Windows environment for JBoss AS 7.x
To add the javaagent command to RHEL JBoss EAP 6.x, JBoss AS 7.0.x, JBoss 8 (Domain
Mode)

Revise the Domain.xml file
Revise the Host.xml file

To add the agent to JBoss 7.2 (standalone)
Fix Linkage Error

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your JBoss server run.sh or run.bat file.

To add the javaagent command in a Windows environment

Open the server run.bat file, located at <jboss_version_install_directory>\bin.
Add the following javaagent argument at the beginning of your app server start script.

set JAVA_OPTS=%JAVA_OPTS% -javaagent:"<drive>:\<agent_home>\javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to
your JVM start script where <my-app-jvm1> is the name you use for the application running
on that JVM.

-javaagent:"<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path of the App Server Agent installation
directory, including the drive. For details see the screen captures.
Sample JBoss 4.x run.bat file

Sample JBoss 4.x run.bat file:

Copyright © AppDynamics 2012-2014 Page 46

3.
a.

b. Sample JBoss 5.x run.bat file

Copyright © AppDynamics 2012-2014 Page 47

3.

b.

4.

1.
2.

a.

 Restart the application server. The application server must be restarted for the changes to
take effect.

To add the javaagent command in a Linux environment for JBoss 5.x

Open the server run.sh file, located at <jboss_version_install_dir>/bin.
Add the following javaagent argument to the server start script.

export JAVA_OPTS="$JAVA_OPTS -javaagent:/<agent_home>/javaagent.jar"

Sample JBoss 5.x run.sh file

Copyright © AppDynamics 2012-2014 Page 48

2.

a.

b.

3.

1.
2.

 If you are a Self-Service Trial user, add the App Agent for Java javaagent
argument to your JVM start script where <my-app-jvm1> is the name you use for the
application running on that JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

Restart the application server. You must restart the application server for the changes to
take effect.

To add the javaagent command in a Linux environment for JBoss AS 6.x

Open the server run.sh file, located at <jboss_version_install_dir>/bin.
Add the following Java environment variables to the server start script.

Copyright © AppDynamics 2012-2014 Page 49

2.

3.

4.

1.
2.

3.

4.

1.
2.

3.

JAVA_OPTS="$JAVA_OPTS
-Djava.util.logging.manager=org.jboss.logmanager.LogManager"
JAVA_ARGS="$JAVA_OPTS
-Dorg.jboss.logging.Logger.pluginClass=org.jboss.logging.logmanager.Logger
PluginImpl"
JBOSS_CLASSPATH=<path>"jboss-logmanager.jar"

Add the following javaagent argument to the server start script.

export JAVA_OPTS="$JAVA_OPTS -javaagent:/agent_install_dir/javaagent.jar"

Restart the application server. You must restart the application server for the changes to
take effect.

To add the javaagent command in a Linux environment for JBoss EAP 6.1.1, EAP 6.2.0, and JBoss AS 7.0.x
(standalone)

Open the standalone.sh file.
Add the following and save the file:

JAVA_OPTS="$JAVA_OPTS
-Djava.util.logging.manager=org.jboss.logmanager.LogManager
-Xbootclasspath/p:/<path/to/jboss-eap-6.1.1>/modules/system/layers/base/or
g/jboss/logmanager/main/jboss-logmanager-1.4.3.Final-redhat-1.jar:/<path/t
o/jboss-eap-6.1.1>/modules/system/layers/base/org/jboss/log4j/logmanager/m
ain/log4j-jboss-logmanager-1.0.2.Final-redhat-1.jar"JAVA_OPTS="$JAVA_OPTS
-javaagent:/<path/to/appdynamics>/javaagent.jar"
JAVA_OPTS="$JAVA_OPTS
-Djboss.modules.system.pkgs=org.jboss.byteman,com.appdynamics,com.appdynam
ics.,com.singularity,com.singularity."

Note: Substitute <path/to/jboss-eap-6.1.1> and <path/to/appdynamics> with the correct
respective paths for your installation.
Restart the application server. You must restart the application server for the changes to
take effect.
Integrate error detection with the jboss log manager logging implementation using a custom
logger definition as described in .Configuring Error Detection Using Custom Loggers

To add the javaagent command in a Linux environment for JBoss 7.1.1

Open the standalone.sh file
Search for the following line in standalone.sh.

Setup the JVM

Add the following above that section and save the file.

http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection#ConfigureErrorDetection-ConfiguringErrorDetectionUsingCustomLoggers

Copyright © AppDynamics 2012-2014 Page 50

3.

4.

5.

6.

1.
2.

3.

4.

export JAVA_OPTS="$JAVA_OPTS -javaagent:<agent-path>/javaagent.jar
-Dorg.jboss.boot.log.file=$JBOSS_HOME/standalone/log/boot.log
-Djava.util.logging.manager=org.jboss.logmanager.LogManager"
export JAVA_OPTS="$JAVA_OPTS
-Xbootclasspath/p:$JBOSS_HOME/modules/org/apache/log4j/main/log4j-1.2.16.j
ar:$JBOSS_HOME/modules/org/jboss/logmanager/log4j/main/jboss-logmanager-lo
g4j-1.0.0.GA.jar:$JBOSS_HOME/modules/org/jboss/logmanager/main/jboss-logma
nager-1.2.2.GA.jar
-Dlogging.configuration=file:$JBOSS_HOME/standalone/configuration/logging.
properties"
#export JAVA_OPTS="$JAVA_OPTS
-Xbootclasspath/p:$JBOSS_HOME/modules/org/jboss/logmanager/main/jboss-logm
anager-1.2.2.GA.jar
-Dlogging.configuration=file:$JBOSS_HOME/standalone/configuration/logging.
properties"

Note: Substitute <agent-path> with the correct path for your installation.
Open standalone.conf and search for the following.

Uncomment the following line to prevent manipulation of JVM options

Add the following above that section and save the file.

if ["x$JBOSS_MODULES_SYSTEM_PKGS" = "x"]; then
JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.appdynamics,com.appdynami
cs.,com.singularity,com.singularity.,org.jboss.logmanager"
JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"
fi

Restart the application server. You must restart the application server for the changes to
take effect.

To add the javaagent command in a Linux environment for JBoss AS 7.x

Open the standalone.conf file.
Search for the following line in standalone.conf.

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"

Add the com.singularity and org.jboss.logmanager packages to that line as follows:

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.singularity,org.jboss.log
manager"

Add the following to the end of the standalone.conf file in the JAVA_OPTS section.

Copyright © AppDynamics 2012-2014 Page 51

4.

5.

6.

1.
2.

-Djava.util.logging.manager=org.jboss.logmanager.LogManager
-Xbootclasspath/p:<JBOSS-DIR>/modules/org/jboss/logmanager/main/jboss-logm
anager-1.2.2.GA.jar
:<JBOSS-DIR>/modules/org/jboss/logmanager/log4j/main/jboss-logmanager-log4
j-1.0.0.GA.jar
:<JBOSS-DIR>/modules/org/jboss/logmanager/log4j/main/log4j-1.2.16.jar

Note: The path for the necessary JAR files may differ for different versions. Provide the
correct path of these JAR files for your version. If any of the packages are not available with
the JBoss ZIP, download the missing package and add it to the path.
In the standalone.sh file, add the following javaagent argument.

export JAVA_OPTS="$JAVA_OPTS -javaagent:/agent_install_dir/javaagent.jar"

above the following section of standalone.sh

...
while true;do
if ["x$LAUNCH_JBOSS_IN_BACKGROUND" = "X"]; then
 # Execute the JVM in the foreground
 eval \"$JAVA\" -D\"[Standalone]\"$JAVA_OPTS \
 \"-Dorg.jboss.boot.log.file=$JBOSS_LOG_DIR/boot.log\" \
 \"-Dlogging.configuration=file:$JBOSS_CONFIG_DIR/logging.properties\"
\
 -jar \"$JBOSS_HOME/jboss-modules.jar\" \

The revised section of your startup script file should look similar to the following image:

Restart the application server.

To add the javaagent command in a Windows environment for JBoss AS 7.x

Open the bin\standalone.conf file.

Copyright © AppDynamics 2012-2014 Page 52

2.

3.
4.
5.

6.
7.

1.
2.

Search for the line JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman" and add the
com.singularity and org.jboss.logmanager packages to that line as follows:

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.singularity,org.jboss.log
manager"

Save the file.
Open the standalone.bat file.
Add the following javaagent argument to the standalone.bat file.

:RESTART
"%JAVA%" \-javaagent:<AGENT-DIR>javaagent.jar %JAVA_OPTS%
"-Dorg.jboss.boot.log.file=%JBOSS_HOME%\standalone\log\boot.log"
"-Dlogging.configuration=[file:%JBOSS_HOME%/standalone/configuration/loggi
ng.properties]" \-jar "%JBOSS_HOME%\jboss-modules.jar"

Save the file.
Restart the application server. The application server must be restarted for the changes to
take effect.

To add the javaagent command to RHEL JBoss EAP 6.x, JBoss AS 7.0.x, JBoss 8 (Domain Mode)

You must add a system property to allow the com.singularity classes in the AppDynamics agent to
be found from any class loader.

Add the jvm options specifying the location of the agent jar file, the application name, and the tier
name.

If all the server instances in the server group are part of the same business application, then
configure -Dappdynamics.agent.applicationName in domain.xml; otherwise, configure the
application name in the host.xml file for each specific server.
If all the server instances in the server group are part of the same tier then configure
-Dappdynamics.agent.tierName in domain.xml, otherwise configure the tier name in host.xml
for each specific server.

-Dappdynamics.agent.applicationName tells the AppDynamics agents the name of the
Business Application to be used to connect to the AppDynamics Controller.

-Dappdynamics.agent.tierName tells the AppDynamics agents the name of the tier to use to
connect to the AppDynamics Controller.

Revise the JBoss domain.xml and host.xml files as indicated in the following sections and then
restart the application server.

Revise the Domain.xml file

Locate and edit domain.xml, usually located under $JBOSS_HOME/domain/configuration/.
Add the following system property, <property name="jboss.modules.system.pkgs"

 in the element.value="com.singularity"/> <system-properties>

Copyright © AppDynamics 2012-2014 Page 53

2.

3.

<system-properties>
 <!-- IPv4 is not required, but setting this helps avoid unintended
use of IPv6 -->
 <property name="java.net.preferIPv4Stack" value="true"/>
 <property name="jboss.modules.system.pkgs"
value="com.singularity"/>
</system-properties>

This property tells the JBoss modules to allow the com.singularity classes in the
AppDynamics App Agent for Java to be found from any class loader. This is required for the
agent to run.
Under the server group name where you want to enable your AppDynamics agents, add the
JVM options using the appropriate values for your agent location, JBoss application name,
and tier name.

<server-group name="main-server-group" profile="full">
 <jvm name="default">
 <heap size="1303m" max-size="1303m"/>
 <permgen max-size="256m"/>
 <jvm-options>
 <option value="-javaagent:<agent_install_dir>/javaagent.jar"/>
 <option value="-Dappdynamics.agent.applicationName=JBOSS-EAP-APP"/>
 <option value="-Dappdynamics.agent.tierName=JBOSS-EAP-TIER"/>
 </jvm-options>
 </jvm>
 <socket-binding-group ref="full-sockets"/>
 </server-group>

Revise the Host.xml file

Add the -Dappdynamics.agent.nodeName jvm option in the host.xml file (usually located under
$JBOSS_HOME/domain/configuration/). This option tells the AppDynamics agent the node name
to use to connect to the AppDynamics Controller. Use the appropriate values for your node
names.

For example:

Copyright © AppDynamics 2012-2014 Page 54

1.

<servers>
 <server name="server-one" group="main-server-group">
 <!-- Remote JPDA debugging for a specific server
 <option
value="-agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n"/>
 -->
 <jvm name="default">
 <jvm-options>
 <option
value="-agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n"/>
 <option value="-Dappdynamics.agent.nodeName=JBOSS-EAP-NODE-1"/>
 </jvm-options>
 </jvm>
 </server>
 <server name="server-two" group="main-server-group" auto-start="true">
 <!-- server-two avoids port conflicts by incrementing the ports in
 the default socket-group declared in the server-group -->
 <socket-bindings port-offset="150"/>
 <jvm name="default">
 <jvm-options>
 <option value="-Dappdynamics.agent.nodeName=JBOSS-EAP-NODE-2"/>
 </jvm-options>
 </jvm>
 </server>
 <server name="server-three" group="other-server-group" auto-start="false">
 <!-- server-three avoids port conflicts by incrementing the ports in
 the default socket-group declared in the server-group -->
 <socket-bindings port-offset="250"/>
 </server>
</servers>

To add the agent to JBoss 7.2 (standalone)

Add the following to the standalone.sh file.

Copyright © AppDynamics 2012-2014 Page 55

1.

2.

3.

AD_AGENT_HOME="/Users/jack.ginnever/Downloads/AppD-Downloads/AppServerAgen
t/3.8.1.0/AppServerAgent"
AD_CONT_HOST="localhost"
AD_CONT_POST="8090"
AD_APPL_NAME="JBossAS"
AD_APPL_TIER="standalone"
AD_APPL_NODE="jboss_node"

AD_OPTS=" -javaagent:$AD_AGENT_HOME/javaagent.jar \
-Dappdynamics.controller.hostName=$AD_CONT_HOST \
-Dappdynamics.controller.port=$AD_CONT_POST \
-Dappdynamics.agent.applicationName=$AD_APPL_NAME \
-Dappdynamics.agent.tierName=$AD_APPL_TIER \
-Dappdynamics.agent.nodeName=$AD_APPL_NODE "
Fix up the Loggers and Bootclasspath
AD_OPTS="$AD_OPTS
-Dorg.jboss.boot.log.file=$JBOSS_HOME/standalone/log/boot.log \
-Djava.util.logging.manager=org.jboss.logmanager.LogManager"
AD_OPTS="$AD_OPTS
-Xbootclasspath/p:$JBOSS_HOME/modules/org/apache/log4j/main/log4j-1.2.16.j
ar:$JBOSS_HOME/modules/org/jboss/log4j/logmanager/main/log4j-jboss-logmana
ger-1.0.1.Final.jar:$JBOSS_HOME/modules/org/jboss/logmanager/main/jboss-lo
gmanager-1.4.0.Final.jar
-Dlogging.configuration=file:$JBOSS_HOME/standalone/configuration/logging.
properties"

JAVA_OPTS="$AD_OPTS $JAVA_OPTS"

Add the following to the standalone.conf file and save it.

--> Commented out original mod to JBOSS_MODULES_SYSTEM_PKGS
#
#if ["x$JBOSS_MODULES_SYSTEM_PKGS" = "x"]; then
JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"
#fi
#
--> Replaced with following mod to JBOSS_MODULES_SYSTEM_PKGS
#
if ["x$JBOSS_MODULES_SYSTEM_PKGS" = "x"]; then
JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.appdynamics,com.appdynami
cs.,com.singularity,com.singularity."
fi

Restart the application server. The application server must be restarted for the changes to
take effect.

Fix Linkage Error

If you see this error:

Copyright © AppDynamics 2012-2014 Page 56

Caused by: java.lang.LinkageError: loader constraint violation in interface
itable initialization: when resolving method
"com.microsoft.sqlserver.jdbc.SQLServerXAConnection.getXAResource()Ljavax/transa
ction/xa/XAResource;" the class loader (instance of
org/jboss/modules/ModuleClassLoader) of the current class,
com/microsoft/sqlserver/jdbc/SQLServerXAConnection, and the class loader
(instance of <bootloader>) for interface javax/sql/XAConnection have different
Class objects for the type javax/transaction/xa/XAResource used in the signature

Add the following JVM option to the start-up script and restart the server:

-Dappdynamics.bciengine.class.lookahead=!*

The error indicates a race condition while loading classes and this flag controls the class
loading hierarchy thus overcoming the class loading problems.

Jetty Startup Settings
To add the javaagent command in a Jetty environment

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your jetty.sh file.

To add the javaagent command in a Jetty environment

1. Open the jetty.sh start script file.

2. Add the following javaagent argument to the beginning of the script.

java -javaagent:/<agent_home>/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

3. Save the script file.

4. Restart the application server for the changes to take effect.
Mule ESB Startup Settings

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Mule ESB 3.X or later uses a Tanuki configuration environment. To add the AppDynamics App
Agent for Java to your Mule ESB environment, add this option to the Tanuki Service wrapper.conf
file.

Copyright © AppDynamics 2012-2014 Page 57

To configure the Tanuki Service Wrapper

1. Open the wrapper.conf file.

2. Use the wrapper.java.additional.<n> property to add the javaagent option.

3. On Linux systems, in the <MULE_HOME>/conf/wrapper.conf file, add the following

wrapper.java.additional.4=-javaagent:"/Users/hbrien/Software/mule-enterprise-sta
ndalone-3.3.1/app_agent/javaagent.jar
wrapper.java.additional.4.stripquotes=TRU
wrapper.java.additional.X=-javaagent:"/opt/app_agent/javaagent.jar

wrapper.java.additional.X.stripquotes=TRUE

Where "X" is a unique integer among the other properties in the file.

Learn More

Mule ESB Support
Oracle WebLogic Startup Settings

To add the javaagent command in a Windows environment
To add the javaagent command in a application running as a Windows service
To add the javaagent command in a Linux environment

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your startWebLogic.sh or startWebLogic.cmd file.

To add the javaagent command in a Windows environment

1. Open the startWebLogic.cmd file, located at
<weblogic_version_install_dir>\user_projects\domains\<domain_name>\bin.

2. Add following javaagent argument to the beginning of your application server start script.

set JAVA_OPTIONS=% JAVA_OPTIONS%
-javaagent:"<drive>:\<agent_home>\javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path of the App Server Agent installation directory,
including the drive.

Copyright © AppDynamics 2012-2014 Page 58

2a. Sample WebLogic v9.x startWebLogic.cmd file

2b. Sample WebLogic v10.x startWebLogic.cmd file

3. Restart the application server. The application server must be restarted for the changes to take
effect.

To add the javaagent command in a application running as a Windows service

Some applications have a pre-compiled startup method that installs WebLogic as a Windows
service. Follow these steps to add the agent to the service.

1. Open the script file that starts the application service, such as

Copyright © AppDynamics 2012-2014 Page 59

install_XXXX_Server_Start_Win_Service.cmd.

2. Add the javaagent command before the line starting with "set CMDLINE=%JAVA_VM%..." such
as

set
CLASSPATH=%MYSERVER_CLASSPATH%;%PRE_CLASSPATH%;%WEBLOGIC_CLASSPATH%;%POST_CLASSP
ATH%;%WLP_POST_CLASSpATH%

set JAVA_VM=%JAVA_VM% %JAVA_DEBUG% %JAVA_PROFILE%

set WLS_DISPLAY_MODE=Production

@REM AppDynamics Agent Start
set JAVA_OPTIONS=% JAVA_OPTIONS%
-javaagent:"<drive>:\<agent_home>\javaagent.jar"
@REM AppDynamics agent END

set CMDLINE=%JAVA_VM% %MEM_ARGS% -classpath %CLASSPATH% %JAVA_OPTIONS%
weblogic.Server"

3. Remove the existing Windows Service for your application. From the command line, run this
script.

install_XXXXX_Server_Start_Win_Service.cmd
XXXXX_xxxxx_Production_Server R

4. Install the Windows Service for your application to include the AppDynamics agent
JAVA_OPTIONS argument.

install_XXXXX_Server_Start_Win_Service.cmd
XXXXX_xxxx_Production_Server I

5. From the WebLogic web console, stop your application.

6. Start your application (which also starts WebLogic) from the Windows Services application,
where the Windows service name = XXXXX_xxxx_Production_Server.

7. Ensure that your application is working properly.

For more information, see in the Oracle documentation.Creating a Server-Specific Script

To add the javaagent command in a Linux environment

1. Open the startWebLogic.sh file, located at
<weblogic_<version#>_install_dir>/user_projects/domains/<domain_name>/bin.

2. Add the following lines of code to the beginning of your application server start script.

http://docs.oracle.com/cd/E13222_01/wls/docs81/adminguide/winservice.html#1188020

Copyright © AppDynamics 2012-2014 Page 60

export JAVA_OPTIONS="$JAVA_OPTIONS -javaagent:/agent_home/javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

The javaagent argument references the full path of the App Server Agent installation directory. For
details see the screen captures.

2a. Sample WebLogic v9.x startWebLogic.sh file

2b. Sample WebLogic v10.x startWebLogic.sh file

Copyright © AppDynamics 2012-2014 Page 61

3. Restart the application server. The application server must be restarted for the changes to take
effect.
OSGi Infrastructure Configuration

Configuring OSGi Containers
To configure Eclipse Equinox
To configure Apache Sling
To configure Apache Felix for GlassFish

For GlassFish 3.1.2
To configure Felix for Jira or Confluence
To configure other OSGi-based containers

Configuring OSGi Containers

The GlassFish application server versions 3.x and later uses OSGi architecture. By default, OSGi
containers follow a specific model for bootstrap class delegation. Classes that are not specified in
the container's CLASSPATH are not delegated to the bootstrap classloader; therefore you must
configure the OSGi containers for the App Server Agent classes.

For more information see .GlassFish OSGi Configuration per Domain

To ensure that the OSGi container identifies the agent, specify the following package prefix:

http://wikis.oracle.com/display/GlassFish/OSGi+configuration+per+domain

Copyright © AppDynamics 2012-2014 Page 62

org.osgi.framework.bootdelegation=com.singularity.*

This prefix follows the regular boot delegation model so that the App Server Agent classes are
visible.

If you already have existing boot delegations, add "com.singularity.*" to the existing path
separated by a comma. For example:

org.osgi.framework.bootdelegation=com.sun.btrace., com.singularity.

To configure Eclipse Equinox

1. Open the config.ini file located at <glassfish-install>/glassfish/osgi/equinox/configuration.

2. Add following package prefix to the config.ini file:

org.osgi.framework.bootdelegation=com.singularity.*

For more information see .Getting Started with Equinox

To configure Apache Sling

1. Open the sling.properties file. The location of the sling.properties varies depending on the Java
platform.
In the Sun/Oracle implementation, the sling.properties file is located at <java.home>/lib.

2. Add following package prefix to the sling.properties file.

org.osgi.framework.bootdelegation=com.singularity.*

To configure Apache Felix for GlassFish

1. Open the config.properties file, located at <glassfish-install>/glassfish/osgi/felix/conf.

2. Add following package prefix to the config.properties file.

org.osgi.framework.bootdelegation=com.singularity.*

For GlassFish 3.1.2

Add:

com.singularity.*

to the boot delegation list in the <GlassFish_Home_Directory>\glassfish\config\osgi.properties file.
For example:

http://www.eclipse.org/equinox/documents/quickstart.php

Copyright © AppDynamics 2012-2014 Page 63

org.osgi.framework.bootdelgation=${eclipselink.bootdelegation}, com.sun.btrace,
com.singularity.*

To configure Felix for Jira or Confluence

For Jira 5.1.8 and newer, Confluence 5.3 and newer

1. Update the jira startup script (e.g. catalina) with the following java system property:

-Datlassian.org.osgi.framework.bootdelegation=META-INF.services,com.yourkit,com.
singularity.*,com.jprofiler,com.jprofiler.*,org.apache.xerces,org.apache.xerces.
,org.apache.xalan,org.apache.xalan.,sun.*,com.sun.jndi,com.icl.saxon,com.icl.s
axon.*,javax.servlet,javax.servlet.*,com.sun.xml.bind.*

2. Update the Java options:

For Linux: JAVA_OPTS=
For Windows: set JAVA_OPTS=%JAVA_OPTS%

-javaagent:/root/AppServerAgent/javaagent.jar"

To configure other OSGi-based containers

For other OSGI-based runtime containers, add the following package prefix to the appropriate
OSGi configuration.

file.org.osgi.framework.bootdelegation=com.singularity.*

Resin Startup Settings
To Configure Resin 1.x - 3.x

To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment

To Configure Resin 4.x

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to the resin.sh or resin.bat file.

To Configure Resin 1.x - 3.x

To add the javaagent command in a Windows environment

1. Open the resin.bat file, located at <Resin_installation_directory>/bin.

2. Add following javaagent argument to the beginning of your application server start script.

Copyright © AppDynamics 2012-2014 Page 64

exec JAVA_EXE -javaagent:"<drive>:\<agent_home>\javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path of the App Server Agent installation directory,
including the drive.

3. Restart the application server for changes to take effect.

To add the javaagent command in a Linux environment

1. Open the resin.sh file, located at <Resin_Installation_Directory>/bin.

2. Add the following javaagent argument to the beginning of your application server start script.

exec $JAVA_EXE -javaagent:"<agent_home>/javaagent.jar"

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

The javaagent argument references the full path of the App Server Agent installation directory.
See the following screenshot.

Copyright © AppDynamics 2012-2014 Page 65

3. Restart the application server. The application server must be restarted for the changes to take
effect.

To Configure Resin 4.x

1. To install the App Server Agent into Resin 4.X or later, edit the ./conf/resin.xml file and add:

Copyright © AppDynamics 2012-2014 Page 66

<jvm-arg>-Xmx512m</jvm-arg>
<jvm-arg>-javaagent:<$appagent_location>/javaagent.jar</jvm-arg>

2. Restart the application server. The application server must be restarted for the changes to take
effect.
Solr Startup Settings

To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to your Solr server.

To add the javaagent command in a Windows environment

1. Open the Windows command line utility.

2. Execute the following commands to add the javaagent argument to the Solr server:

>cd $Solr_Installation_Directory
>java -javaagent:"<drive>:\<agent_home>\javaagent.jar" -jar start.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path to the App Server Agent installation directory,
including the drive. For details see the screenshots.

To add the javaagent command in a Linux environment

1. Open the terminal.

2. Execute the following commands to add the javaagent argument to the Solr server:

Copyright © AppDynamics 2012-2014 Page 67

>cd $Solr_Installation_Directory
>java -javaagent:"<agent_home>/javaagent.jar" -jar start.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

The javaagent argument references the full path to the App Server Agent installation directory. For
details see the screenshot.

Standalone JVM Startup Settings
To add the javaagent command in a Windows environment
To add the javaagent command in a Linux environment

AppDynamics works just as well with JVMs that are not application servers or containers.

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option, a
standard Java option and can be used with any JVM. Add this option to your standalone JVM.

To add the javaagent command in a Windows environment

1. Open the command line utility for Windows.

2. Add javaagent argument to the standalone JVM:

>java -javaagent:"Drive:\agent_home\javaagent.jar"
<fully_qualified_class_name_with_main_method>

For example:

Copyright © AppDynamics 2012-2014 Page 68

>java -javaagent:"C:\AppDynamics\agentDir\javaagent.jar" com.main.HelloWorld

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:"<drive>:\<agent_home>\javaagent.jar=uniqueID=<my-app-jvm1>"

The javaagent argument references the full path to the App Server Agent installation directory,
including the drive.

To add the javaagent command in a Linux environment

1. Open the terminal.

2. Add the javaagent argument to the standalone JVM:

>java -javaagent:"/agent_install_dir/javaagent.jar"
<fully_qualified_class_name_with_main_method>

For example:

>java -javaagent:"/mnt/AppDynamics/agentDir/javaagent.jar" com.main.HelloWorld

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

The javaagent argument references the full path to the App Server Agent installation directory.
Tanuki Service Wrapper Configuration

To configure the Tanuki Service Wrapper

The AppDynamics Java App Server Agent bootstraps using the javaagent command line option.
Add this option to the Tanuki Service wrapper.conf file.

To configure the Tanuki Service Wrapper

1. Open the wrapper.conf file.

2. Use the wrapper.java.additional.<n> property to add the javaagent option.

Copyright © AppDynamics 2012-2014 Page 69

wrapper.java.additional.6=-javaagent:/C:/agent/javaagent.jar

 If you are a Self-Service Trial user, add the App Agent for Java javaagent argument to your
JVM start script where <my-app-jvm1> is the name you use for the application running on that
JVM.

-javaagent:<agent_home>/javaagent.jar=uniqueID=<my-app-jvm1>

For more information see:

Tanuki Service Wrapper Properties
Example Configuration
More Help On Tanuki Service Wrapper

Tibco ActiveMatrix BusinessWorks Service Engine Configuration

There are typically two scripts associated with the Tibco ActiveMatrix BusinessWorks Services
engine.

my_application.sh

my_application.tra

The JVM that runs the services start with a command line tool called bwengine(.exe).

Add the following to the .tra file:

java.extended.properties=-javaagent:/opt/appagent/javaagent.jar

See also: and .https://docs.tibco.com/ https://tibbr.tibcommunity.com/
SUN JDK 1.6 on Linux

The App Agent for Java calls an API to collect CPU times for threads. Because of a Sun JDK 1.6
 the API may take too long, and you may see the following error:problem on Linux

threads blocking on
sun.management.ThreadImpl.getThreadTotalCpuTime0(Native Method).

If this error occurs, the App Agent for Java by default will disable CPU time collection for threads.
You can force the agent to continue to collect CPU times for threads using the thread-cpu-capture-

 node property, but this may cause unacceptable overhead on youroverhead-threshold-in-ms
application. We recommend you use this instead to speed up the API callJava HotSpot VM option
itself.

-XX:+UseLinuxPosixThreadCPUClocks

Enable SSL for Java

http://wrapper.tanukisoftware.org/doc/english/properties.html
http://wrapper.tanukisoftware.org/doc/english/props-example-config.html
http://wrapper.tanukisoftware.org/doc/english/prop-java-additional-n.html
https://docs.tibco.com/
https://tibbr.tibcommunity.com/
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6888526
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6888526
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-thread-cpu-capture-overhead-threshold-in-ms
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-thread-cpu-capture-overhead-threshold-in-ms
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Copyright © AppDynamics 2012-2014 Page 70

Before You Begin
SSL Utilities

Keystore Certificate Extractor Utility
Password Encryption Utility

SaaS Controller
Sample SaaS SSL controller.xml configuration
Sample SaaS SSL JVM startup script configuration

On-Premise Controller with a Trusted CA Signed Certificate
Sample on-premise SSL controller.xml configuration for a CA signed certificate
Sample on-premise SSL JVM startup script configuration for a CA signed certificate

On-Premise Controller with an Internally Signed Certificate
Sample on-premise SSL controller.xml configuration for an internally signed certificate
Sample on-premise SSL JVM startup script configuration for an internally signed
certificate

On-Premise Controller with a Self-Signed Certificate
Sample on-premise SSL controller.xml configuration for a self-signed certificate
Sample on-premise SSL JVM startup script configuration for a self-signed certificate

Learn More

This topic covers how to configure the App Agent for Java (the agent) to connect to the Controller
using SSL. It assumes that you use a SaaS Controller or have configured the on-premise
Controller to use SSL.

The Java agent supports extending and enforcing the SSL trust chain when in SSL mode.

Before You Begin

Before you configure the agent to enable SSL, gather the following information:

Identify if the Controller is SaaS or on-premise.
Identify the Controller SSL port.

For SaaS Controllers the SSL port is 443.
For on-premise Controllers the default SSL port is 8181, but you may configure the
Controller to listen for SSL on another port.

Identify the signature method for the Controller's SSL certificate:
A publicly known certificate authority (CA) signed the certificate. This applies for
Verisign, Thawte, and other commercial CAs.
A CA internal to your organization signed the certificate. Some companies maintain
internal certificate authorities to manage trust and encryption within their domain.
The Controller uses a self-signed certificate.

Decide how to manage the configurations. See :Where to Configure App Agent Properties
Add the configuration parameters to <agent install directory>/conf/controller-info.xml.
Or
Include system properties in the -javaagent argument in your JVM startup script.

SSL Utilities

We provide two utilities to help you implement SSL.

Keystore Certificate Extractor Utility

The Keystore Certificate Extractor Utility exports certificates from the Controller's Java keystore

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-WheretoConfigureAppAgentProperties

Copyright © AppDynamics 2012-2014 Page 71

and writes them to an agent truststore. It installs to the following location:

<agent install directory>/utils/keystorereader/kr.jar

 To avoid copying the Controller keystore to an agent machine, you can run this utility from the
Controller server. Access the agent distribution on the Controller at the following location:

<controller install directory>/appserver/glassfish/domains/domain1/appagent

To use the Keystore Certificate Extractor, execute kr.jar and pass the following parameters:

The full path to the Controller's keystore:

<controller install
directory>/appserver/glassfish/domains/domain1/config/keystore.jks

The truststore output file name. By default the agent looks for cacerts.jks.
The password for the Controller's certificate, which defaults to "changeit". If you don't include
a password, the extractor applies the password "changeit" to the output truststore.

java -jar kr.jar <controller install
directory>/appserver/glassfish/domains/domain1/config/keystore.jks cacerts.jks
<controller certificate password>

Password Encryption Utility

The Password Encryption Utility encrypts the Controller's certificate password so you can add it to
the controller-info.xml file. It installs to the following location:

<agent install directory>/utils/encryptor/encrypt.jar

To use the Password Encryption Utility, execute encrypt.jar and pass the clear text password as a
parameter. The utility returns the encrypted password:

java -jar <agent install directory>/utils/encryptor/encrypt.jar <controller
certificate password>

Encrypted password is nkV/LwhLMLFjfNTbh0DLow==

SaaS Controller

1. Update the JVM startup script or controller-info.xml to use SSL enabled settings. See App Agent
.for Java Configuration Properties

Copyright © AppDynamics 2012-2014 Page 72

Set the Controller Port Property to 443. See .Controller Port Property
Set the Controller SSL Enabled Property to true. See .Controller SSL Enabled Property

2. Save your changes.

3. Restart the JVM.

The agent detects SaaS implementations based upon the controller host URL, which must contain
".saas.appdynamics.com". It also checks for an account-name and an access-key. If all three
elements exist, the agent connects with the SaaS Controller via SSL.

Sample SaaS SSL controller.xml configuration

<?xml version="1.0" encoding="UTF-8"?>
<controller-info>

 <controller-host>mycompany.saas.appdynamics.com</controller-host>

 <controller-port>443</controller-port>

 <controller-ssl-enabled>true</controller-ssl-enabled>
...
 <account-name>mycompany</account-name>

 <account-access-key>xxxxxxxxxxxxx</account-access-key>
...
</controller-info>

Sample SaaS SSL JVM startup script configuration

java -javaagent:/home/appdynamics/AppServerAgent/
-Dappdynamics.controller.hostName=<controller domain>
-Dappdynamics.controller.port=443 -Dappdynamics.controller.ssl.enabled=true ...
-Dappdynamics.agent.accountName=<account name>
-Dappdynamics.agent.accountAccessKey=<access key>

On-Premise Controller with a Trusted CA Signed Certificate

1. Update your JVM startup script or controller-info.xml to use SSL enabled settings. See App
.Agent for Java Configuration Properties

Set the Controller Port Property to the on-premise SSL port. See .Controller Port Property
Set the Controller SSL Enabled Property to true. See .Controller SSL Enabled Property
To configure the agent to perform full validation of the Controller certificate, set the Force
Default SSL Certificate Validation app agent node property to true. See Force Default SSL

.Certificate Validation Property

2. Save your changes.

3. Restart the JVM.

The agent connects to the Controller over SSL. Because the Force Default SSL Certificate

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerPortProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerSSLEnabledProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerPortProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerSSLEnabledProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ForceDefaultSSLCertificateValidationProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ForceDefaultSSLCertificateValidationProperty

Copyright © AppDynamics 2012-2014 Page 73

Validation app agent node roperty is set to true, the agent enforces the trust chain using the
default Java truststore.

Sample on-premise SSL controller.xml configuration for a CA signed certificate

<?xml version="1.0" encoding="UTF-8"?>
<controller-info>

 <controller-host>mycontroller.mycompany.com</controller-host>

 <controller-port>8181</controller-port>

 <controller-ssl-enabled>true</controller-ssl-enabled>

<force-default-certificate-validation>true</force-default-certificate-validation
>

...
</controller-info>

Sample on-premise SSL JVM startup script configuration for a CA signed certificate

java -javaagent:/home/appdynamics/AppServerAgent/
-Dappdynamics.controller.hostName=<controller domain>
-Dappdynamics.controller.port=443 -Dappdynamics.controller.ssl.enabled=true
-Dappdynamics.force.default.ssl.certificate.validation=true ...

On-Premise Controller with an Internally Signed Certificate

1. Obtain the root CA certificate from your internal resource. By default the agent looks for a Java
truststore named cacerts.jks.

To import a certificate to a truststore, run the following command:

keytool -import -alias rootCA -file <certificate file name> -keystore
cacerts.jks -storepass <truststore password>

 This command creates the truststore cacerts.jks if it does not exist and assigns it the password
you specify.

2. Copy the truststore file to the agent configuration directory:

cp cacerts.jks <agent install directory>/conf/cacerts.jks

3. Encrypt the truststore password. See .Password Encryption Utility

4. Update your JVM startup script or controller-info.xml to use SSL enabled settings. See App

Copyright © AppDynamics 2012-2014 Page 74

.Agent for Java Configuration Properties

Set the Controller Port Property to the on-premise SSL port. See .Controller Port Property
Set the Controller SSL Enabled Property to true. See .Controller SSL Enabled Property
Set the Controller Keystore Password Property to the encrypted password. See Controller

.Keystore Password Property
 You must configure this property in the controller-info.xml. It is not available as a system

property in the JVM startup script.

5. Restart the JVM.

The agent detects the cacerts.jks truststore in its configuration directory and uses it to enforce the
trust chain when connecting to the Controller over SSL.

Sample on-premise SSL controller.xml configuration for an internally signed certificate

<?xml version="1.0" encoding="UTF-8"?>
<controller-info>

 <controller-host>mycontroller.mycompany.com</controller-host>

 <controller-port>8181</controller-port>

 <controller-ssl-enabled>true</controller-ssl-enabled>

 <controller-keystore-password>nkV/LwhLMLFjfNTbh0DLow==</controller-keystore-pas
sword>

...
</controller-info>

Sample on-premise SSL JVM startup script configuration for an internally signed certificate

java -javaagent:/home/appdynamics/AppServerAgent/
-Dappdynamics.controller.hostName=<controller domain>
-Dappdynamics.controller.port=443 -Dappdynamics.controller.ssl.enabled=true ...

On-Premise Controller with a Self-Signed Certificate

1. Extract the Controller's self-signed Certificate to a truststore named cacerts.jks. See Keystore
.Certificate Extractor Utility

2. Copy the truststore file to the agent configuration directory:

cp cacerts.jks <agent install directory>/conf/cacerts.jks

3. Encrypt the truststore password. See .Password Encryption Utility

4. Update your JVM startup script or controller-info.xml to use SSL enabled settings. See App
.Agent for Java Configuration Properties

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerPortProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerSSLEnabledProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerKeystorePasswordProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerKeystorePasswordProperty

Copyright © AppDynamics 2012-2014 Page 75

Set the Controller Port Property to the on-premise SSL port. See .Controller Port Property
Set the Controller SSL Enabled Property to true. See .Controller SSL Enabled Property
Set the Controller Keystore Password Property to the encrypted password. See Controller

.Keystore Password Property
 You must configure this property in the controller-info.xml. It is not available as a system

property in the JVM startup script.

5. Restart the JVM.

The agent detects the cacerts.jks truststore in its configuration directory and uses it to enforce the
trust chain when connecting to the Controller over SSL.

Sample on-premise SSL controller.xml configuration for a self-signed certificate

<?xml version="1.0" encoding="UTF-8"?>
<controller-info>

 <controller-host>mycontroller.mycompany.com</controller-host>

 <controller-port>8181</controller-port>

 <controller-ssl-enabled>true</controller-ssl-enabled>

 <controller-keystore-password>nkV/LwhLMLFjfNTbh0DLow==</controller-keystore-pas
sword>

...
</controller-info>

Sample on-premise SSL JVM startup script configuration for a self-signed certificate

java \-javaagent:/home/appdynamics/AppServerAgent/
\-Dappdynamics.controller.hostName=<controller domain>
\-Dappdynamics.controller.port=443 \-Dappdynamics.controller.ssl.enabled=true
...

Learn More

Implement SSL
Install the App Agent for Java

Upgrade the App Agent for Java

This topic provides instructions for upgrading the App Agent for Java.

Upgrade Sequence

If you are upgrading both the Controller and agents, first upgrade the Controller and then upgrade
the Agents.

To upgrade the App Agent for Java

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerPortProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerSSLEnabledProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerKeystorePasswordProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ControllerKeystorePasswordProperty
http://docs.appdynamics.com/display/PRO14S/Implement+SSL

Copyright © AppDynamics 2012-2014 Page 76

1.
2.
3.

4.

1. Shut down the application server where the App Agent for Java and the optional machine agent
is installed.

2. Create a backup copy of the current agent installation directory and move the backup directory
to a new location.

3. Download the latest release from .AppDynamics Download Center

4. Extract the Agent binaries to a new directory and rename old directory. Then rename the new
directory the same name as the original one. Copy the controller-info.xml from the old Agent
directory to the new Agent directory. At the end, you should have the new files using the same
directory path as the previous one.

5. If you previously made changes to the
<App_Server_Agent_Installation_Directory>/conf/app-agent-config.xml file, copy those changes to
the new file.

Using the same directory path avoids the task of manually changing the agent-related
configurations in your JVM startup script.

6. Restart the application server.

Uninstall the App Agent for Java

To uninstall the Java Agent
Learn More

If you delete an app agent from the Controller UI, as described in , but do notManage App Agents
shut down the JVM that the app agent runs on, the app agent will reappear in the UI the next time
it connects to the Controller.

To prevent an app agent from connecting to the Controller, you need to remove the app agent
settings from the JVM configuration. This frees the license associated with the agent in the
Controller and makes it available for use by another app agent. This topic describes how to
uninstall an App Agent for Java from the JVM configuration.

To uninstall the Java Agent

Stop the application server on which the App Agent for Java is configured.
Remove the -javaagent argument in the startup script of the JVM.
Remove any system properties configured for the App Agent for Java from the startup script
of your JVM.
Restart the application server.

Learn More

Manage App Agents
Install the App Agent for Java
App Agent for Java Configuration Properties

Configure AppDynamics for Java

See also, App Agent for Java Configuration Properties

Business Transaction Configuration Methodology for Java

Modifying the Default Business Transaction Configuration

http://download.appdynamics.com
http://docs.appdynamics.com/display/PRO14S/Manage+App+Agents
http://docs.appdynamics.com/display/PRO14S/Manage+App+Agents

Copyright © AppDynamics 2012-2014 Page 77

Suggested Methodology
1. Confirm Business Relevance
2. Review the Architecture
3. Modify Automatic Detection Criteria

Disable Entry Point Discovery
Customize Detection Settings
Combine Business Transactions
Use Dynamic Values to Split a Business Transaction
Collect Extra Traffic into a Catch-all Transaction

4. Exclude Business Transactions
Exclude Action in the UI
Configure Exclude Rules

Change the Default Exclude Rule Settings
Create New Exclude Rules

5. Rename Business Transactions
6. Group Business Transactions
7. Delete Old Unwanted Business Transactions

Modifying the Default Business Transaction Configuration

Sometimes you need to fine-tune your business transaction configuration, such as when:

You do not see business transactions that you expect to see based on how your application
should be represented in AppDynamics. See .Organizing Traffic as Business Transactions
You see the in the , forAll Other Traffic business transaction Business Transactions List
example:

AppDynamics creates the when a business transaction limitAll Other Traffic business transaction
is reached. You can modify the transaction discovery configuration to reduce the number of
business transactions.

To modify your business transaction configuration follow this suggested methodology.

Suggested Methodology

http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction

Copyright © AppDynamics 2012-2014 Page 78

1. Confirm Business Relevance

The first step in analyzing the business transaction configuration that is right for
your application is to confirm which transactions you want to monitor. Talk with your
application developers and architects about which are the most important
processes to monitor. The discussion will help you identify the correct entry points,
which define the beginnings of your business transactions. Be sure you are
measuring the right things. See .Organizing Traffic as Business Transactions

Once you know what you want to monitor, you can examine the business
transactions being detected and determine your next steps.

2. Review the Architecture

If you are missing an expected business transaction, review the application
architecture and make sure the expected business transaction is not part of another

http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions

Copyright © AppDynamics 2012-2014 Page 79

transaction initiated by another tier. Also make sure the application/tier/node
configuration is correct. See Mapping Application Services to the AppDynamics

.Model

3. Modify Automatic Detection Criteria

While AppDynamics discovers many business transactions automatically, you may
need to modify these mechanisms to detect additional ones or to disable ones that
are not critical to monitor.

Configuration is hierarchical for a business application and its tiers, and has both a
"global" scope and a more granular "custom" scope. See Hierarchical Configuration

 and .Model How AppDynamics Identifies Business Transactions Using Entry Points

To change discovery mechanisms you can:

Disable Entry Point Discovery
Customize Detection Settings
Combine Business Transactions
Use Dynamic Values to Split a Business Transaction

Disable Entry Point Discovery

In the Transaction Detection window for the application or tier, you can completely
disable transaction monitoring for a type of entry point. You may want to do this
when:

You know that all the business transactions of a specific entry point type don't
need to be monitored.
You want to use custom transaction discovery configurations instead.

Another example is when Servlets implement Spring Beans and you are interested
in monitoring the transaction starting at the Spring Bean level. In this case you can
disable Servlet discovery and then only the Spring Beans, which are enabled by
default, are discovered and monitored. See Exclude Spring Beans Of Specific

.Packages

http://docs.appdynamics.com/display/PRO14S/Mapping+Application+Services+to+the+AppDynamics+Model
http://docs.appdynamics.com/display/PRO14S/Mapping+Application+Services+to+the+AppDynamics+Model
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-HowAppDynamicsIdentifiesBusinessTransactionsUsingEntryPoints
http://docs.appdynamics.com/display/PRO14S/Exclude+Rule+Examples+for+Java#ExcludeRuleExamplesforJava-ExcludeSpringBeansOfSpecificPackages
http://docs.appdynamics.com/display/PRO14S/Exclude+Rule+Examples+for+Java#ExcludeRuleExamplesforJava-ExcludeSpringBeansOfSpecificPackages

Copyright © AppDynamics 2012-2014 Page 80

Customize Detection Settings

You can use custom match rules on entry points to establish a set of transactions
that give a good and distinct representation of the business activity while not being
too granular. See and Configure Business Transaction Detection Java Web

.Application Entry Points

For example, by default AppDynamics uses the first two segments of a URI to
identify Servlet-based business transactions. Depending on your application code,
you may need to use either fewer or more segments of a URI to get the correct
granularity to identify the transactions.

For another example, you may have a business transaction initiated by code that
does not use a standard framework, and you need to define a custom POJO entry

.point

Combine Business Transactions

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 81

You can combine multiple business transactions by changing the auto-discovery
rules at the global application or tier level and/or by creating custom match rules at
more granular levels. Both techniques help you configure what business
transactions to monitor.

For example, you may have many Servlet-based business transactions that are
auto-discovered using the first two segments of the URI.

http://www.myapp.com/users/user01
http://www.myapp.com/users/user02
http://www.myapp.com/users/user03
etc...

If it makes more sense to use only the first segment, you can change the
auto-discovery rule to specify only the first segment.

http://www.myapp.com/users

You can also combine multiple transactions using custom match rules on entry
points. See and Configure Business Transaction Detection Java Web Application

.Entry Points

Use Dynamic Values to Split a Business Transaction

The process of using a dynamic value to customize business transaction discovery
is called transaction splitting. Transaction spitting allows you to fine-tune transaction
detection or exclusion based on a parameter or user data.

For example, you could create a new business transaction configuration that uses
the "color" parameter to separate products/outdoor transactions.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 82

See more Servlet examples:

Automatic Naming Configurations for Servlet-Based Business Transactions
Custom Naming Configurations for Servlet-Based Business Transactions
Advanced Servlet Transaction Detection Scenarios

Collect Extra Traffic into a Catch-all Transaction

After configuring the most important entry points, consider creating a new "catch-all"
rule to collect and name all other website traffic. This will help manage the number
of business transactions you see in lists and flow maps.

Create a custom match "catch-all" rule where:

Entry point type is "Servlet" (the most commonly encountered entry point type
in Java environments)
Priority is "0"
Match value is "URI is not empty"

Make sure the Priority is "0" so that it will be discovered last. Any operations that
don't match your customized detection rules will be discovered by this "catch-all"
rule.

 : The "catch-all" rule also captures all web service and Struts traffic. This isNote
because custom rules are evaluated before exclude rules, and there are default
exclude rules for web service and Struts traffic. The "catch-all" rule will evaluate first
and put what would normally be excluded by default into the "catch-all" business
transaction.

4. Exclude Business Transactions

There are two ways to exclude auto-discovered business transactions that you do
not need to monitor.

The : Excluding transactions from the UI is helpful ifExclude Action in the UI
you think you may want to resume monitoring the transaction in the future, as
the underlying configuration is still present. For example, a transaction may

Copyright © AppDynamics 2012-2014 Page 83

not have traffic now but you anticipate that it will in the future.

Configure Exclude Rules: One reason to use exclude rules over the Exclude
action in the UI is mainly for efficiency, as you can exclude whole classes of
business transactions using string . See match rule conditions Creating

.Exclude Rules

Exclude Action in the UI

When you exclude a business transaction from the UI, AppDynamics retains
existing metrics for the business transaction, but no longer monitors it. Excluded
transactions do not count against the maximum number of transactions allowed per
application or per agent. Excluding transactions using this method is helpful if you
think you may want to resume monitoring the transaction in the future.

The exclude action in the UI is most useful for web service, POJO, and EJB
business transactions, where a single class or web service detects many
methods/operations, and you want to monitor some but not all of them. In this case
it's onerous to set up custom exclude rules, and much simpler to select the subset
you do not want and exclude them via the UI.

In the Business Transaction List you can select one or more transactions and either
right-click or select . Exclude Transactions Actions -> Exclude Transactions

To resume monitoring the business transaction, you can "un-exclude" it from the
View Excluded Transactions window.

See .Excluding Business Transactions from the UI

Configure Exclude Rules

Exclude rules prevent detection of business transactions that match certain criteria.
You might want to use exclude rules in the following situations:

AppDynamics is detecting business transactions that you are not interested in
monitoring.
A detected business transaction has no traffic and probably will not have
interesting traffic in the future.
You need to trim the total number of business transactions in order to stay
under the agent and Controller limits.
You need to substitute a default entry point with a more appropriate entry
point using a custom match rule.

To customize exclude rules you can:

Change the Default Exclude Rule Settings
and
Create New Exclude Rules

Change the Default Exclude Rule Settings

Several entry points are excluded by default and you can edit them in the
Transaction Detection panel.

http://docs.appdynamics.com/display/PRO14S/Match+Rule+Conditions
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CreatingExcludeRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CreatingExcludeRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludingBusinessTransactionsfromtheUI

Copyright © AppDynamics 2012-2014 Page 84

Create New Exclude Rules

You can create new exclude rules using custom match conditions that provides fine
granularity over business transaction detection.

Copyright © AppDynamics 2012-2014 Page 85

For example an exclude rule can:

Skip an EJB control class and use the business logic classes
Behave like a filter that allows eligible requests and ignores the rest
Exclude Spring Beans of specific packages.

See and .Creating Exclude Rules Exclude Rule Examples for Java

5. Rename Business Transactions

By default, all business transactions are identified using default naming schemes
for different types of requests. For ease of use you can change the label associated
with the name. Use the menu in the Action -> Rename Business Transaction

 or the to give a user-friendly name to theDashboard Business Transaction List
transaction.

6. Group Business Transactions

When multiple business transactions are similar and you want to roll up their
metrics, you can put multiple business transactions into a group. You get metrics for
each transaction and for the group as a whole. Grouping in the UI makes your lists
and flowcharts easier to read by reducing visual clutter.

See and Organizing Business Transactions into Groups Grouping Business

http://docs.appdynamics.com/display/PRO14S/Exclude+Rule+Examples+for+Java#ExcludeRuleExamplesforJava-UsetheNextLayerofApplicationLogic
http://docs.appdynamics.com/display/PRO14S/Exclude+Rule+Examples+for+Java#ExcludeRuleExamplesforJava-UseanExcludeRuleasaFilter
http://docs.appdynamics.com/display/PRO14S/Exclude+Rule+Examples+for+Java#ExcludeRuleExamplesforJava-ExcludeSpringBeansOfSpecificPackages
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CreatingExcludeRules
http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Dashboard
http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Dashboard
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Organizing+Traffic+as+Business+Transactions#OrganizingTrafficasBusinessTransactions-OrganizingBusinessTransactionsintoGroups
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-GroupingBusinessTransactions

Copyright © AppDynamics 2012-2014 Page 86

.Transactions

7. Delete Old Unwanted Business Transactions

After you have modified the business transaction discovery configurations, you then
need to delete the old, unwanted business transactions. If you delete a transaction
and you have not changed the configuration, it will be rediscovered. However, when
you have revised the transaction discovery rules properly for what you want to see
and then delete the unwanted business transaction, it won't be rediscovered.

You can delete transactions from the using Business Transaction List More
.Actions

Java Web Application Entry Points
Tiers and Web Application Entry Points
Other Web Application Frameworks Based on Servlets or Servlets Filter
Learn More

This section discusses web application entry points for different types of business transactions.

Tiers and Web Application Entry Points

A tier can have multiple entry points.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-GroupingBusinessTransactions

Copyright © AppDynamics 2012-2014 Page 87

For example, for Java frameworks a combination of pure Servlets or JSPs, Struts, Web services,
Servlet filters, etc. may all co-exist on the same JVM.

The middle-tier components like EJBs and Spring beans are usually not considered entry points
because they are normally accessed using either the front-end layers such as Servlets or from
classes that invoke background processes.

For details about Java entry points see:

Other Web Application Frameworks Based on Servlets or Servlets Filter

AppDynamics provides out-of-the-box support for most of the common web frameworks that are
based on Servlets or Servlet Filters. When using any of the frameworks listed below, refer to the S

 to configure transaction discovery.ervlet discovery rules

Spring MVC
Wicket
Java Server Faces (JSF)
JRuby
Grails
Groovy
Tapestry
ColdFusion

Learn More

Servlet Entry Points

Servlet-Based Business Transactions
Identify Business Transactions Based on REST-Style URLs
Additional Servlet-Based Business Transaction Detection Scenarios
Learn More

You can configure transaction entry points for Servlet-based methods that may or may not be used
as part of an application framework.

Copyright © AppDynamics 2012-2014 Page 88

Servlet-Based Business Transactions

AppDynamics allows you to configure a transaction entry point on the invocation of the service
method of a Servlet. The response time for the Servlet transaction is measured when the Servlet
entry point is invoked.

As discussed in and Configure Business Transaction Detection Business Transaction
Configuration Methodology for Java, AppDynamics automatically identifies business transactions,
and if the defaults are not ideal for monitoring your application, you can change them. For
Servlet-based transactions you can:

Identify a Servlet request based on a particular segment of its URI.
Identify a Servlet request based on part of its HTTP request, such as header values,
parameters, etc.

There are two scopes to identifying business transactions:

 (sometimes called "global discovery rules"Automatic transaction naming configurations
and "auto-detection scheme") by default apply across the entire business application and
can be overridden at the tier level. AppDynamics provides default, out-of-the-box automatic
configurations. You can modify the automatic global transaction naming configuration across
the entire business application or tier in the Transaction Detection Entry Points and
Transaction Naming Configuration windows. See Automatic Naming Configurations for

.Servlet-Based Business Transactions
 (sometimes called "custom match rules") Custom transaction naming configurations by

default apply across the entire business application and can be overridden at the tier level.
AppDynamics provides some POJO custom match rules that are disabled by default. When
you need different configurations for different parts of the application or different web
contexts, add custom match rules in the Transaction Detection and New Business Transaction
Match Rule window. See Custom Naming Configurations for Servlet-Based Business

.Transactions

As you might expect, you can use a combination of the global and specific configurations to effectively
identify and represent the most important business transactions in your application. See When to Use
Custom Naming Configurations Instead of Automatic Global Configurations.

Identify Business Transactions Based on REST-Style URLs

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 89

REST applications typically have dynamic URLs where the application semantics are a part of the
URL. Sometimes you need to "skip over" a dynamic part of a URL when identifying business
transactions.

To configure business transactions based on dynamic URLs, see:

For global configurations:
Skip a Segment of the URL
Use Multiple Segments in a URL

For custom configurations:
Custom Naming Configurations for Servlet-Based Business Transactions

Additional Servlet-Based Business Transaction Detection Scenarios

For other detection scenarios see:

Learn More

For more information see:

Automatic Naming Configurations for Servlet-Based Business Transactions
Custom Naming Configurations for Servlet-Based Business Transactions
Use Parts of HTTP Requests to Name Global Servlet Entry Points
Configure Business Transaction Detection

Automatic Naming Configurations for Servlet-Based Business Transactions

Default Automatic Naming Identification for Servlet-Based Transactions
Modify the Automatic Global Naming

To modify the automatic global naming for Servlet-based transactions
Use Different Segments of the URI to Globally Identify Business Transactions

Use the Full, First or Last Segments of the URI
Skip a Segment of the URI
Use Multiple Segments in a URI

Use Parts of HTTP Requests to Automatically Identify Business Transactions
To modify the automatic global naming for Servlet-based transactions

Use URI Segment Numbers
Use HTTP Parameter Values
Use Header Values
Use a Referer Header
Use Cookie Values
Use Session Attribute Values
Use Methods
Use Request Host
Use Request Originating Address
Use Custom Expressions

Use Part of an HTTP Parameter Value to Split a Business Transaction
Learn More

You can configure the automatic global business transaction naming criteria for Servlet-based
applications. Automatic transaction naming configurations (sometimes called "global discovery
rules" and "auto-detection scheme") by default apply across the entire business application and
can be overridden at the tier level. You can modify the automatic global transaction naming

http://docs.appdynamics.com/display/PRO14S/Use+Parts+of+HTTP+Requests+to+Name+Global+Servlet+Entry+Points
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 90

configuration across the entire business application or tier in the Transaction Detection Entry
Points and Transaction Naming Configuration windows.

You can both modify the global automatic discovery rules and/or create custom match rules. See
.When to Use Custom Naming Configurations Instead of Automatic Global Configurations

Default Automatic Naming Identification for Servlet-Based Transactions

By default AppDynamics automatically discovers and identifies all Servlet-based business
transactions using the first two segments of the URI.

For example, if the URI for a checkout operation in an online store is

http://acmeonline.com/store/checkout

AppDynamics automatically names the business transaction "store/checkout" and all checkout
requests are handled in one business transaction.

By default AppDynamics does not use parts of the HTTP request to identify business
transactions.

Modify the Automatic Global Naming

You can modify the URI and/or specify parts of the HTTP request.

Change which segments of the URI are used to automatically identify business transactions.
See the section .Use Different Segments of the URI to Identify Business Transactions
When the URI does not contain enough information to effectively identify the business
transaction, you can use headers, parameters, cookies, and other parts of HTTP
requests. See the section .Use Parts of HTTP Requests to Identify Transactions

To modify the automatic global naming for Servlet-based transactions

1. In the left navigation pane click .Configure -> Instrumentation

2. In the Transaction Detection tab select the application or a tier.

3. Click the Java - Transaction Detection sub-tab.

4. Expand the Entry Points panel.

5. In the Servlet section, confirm that and Transaction Monitoring Discover Transactions
 are both enabled.automatically for all Servlet requests

6. In the Servlet section, click .Configure Naming

Use Different Segments of the URI to Globally Identify Business Transactions

http://docs.appdynamics.com/display/PRO14S/Servlet+Entry+Points#ServletEntryPoints-WhentoUseCustomNamingConfigurationsInsteadofAutomaticGlobalConfigurations

Copyright © AppDynamics 2012-2014 Page 91

You can change the automatic global naming configuration to fine-tune how AppDynamics
identifies Servlet-based business transactions. You can:

Use the Full, First or Last Segments
Skip a Segment
Use Multiple Segments

Use the Full, First or Last Segments of the URI

For example the following URI represents the checkout operation in ACME Online:

http://acmeonline.com/web/store/checkout

By default a business transaction is identified by the first two segments of the URI:
"/web/store". However this does not indicate the business functionality of the operation, such as
checkout, add to cart, etc. Another approach is to identify the business transaction using the last
two segments of the URI: "store/checkout".

At the global scope you modify URI detection to:

Use the full URI
Use either the first or last segments of the URI, and specify how many segments

If you need more granularity on the URI, such as to use non-contiguous segments, you can click N
 and specify the segments with the ame Transactions dynamically using part of the request Us

 option as described in the following sections.e URI segments in Transaction names

Copyright © AppDynamics 2012-2014 Page 92

Skip a Segment of the URI

Suppose a customer ID or the order ID is part of the URI, and you don't need that information to
identify a business transaction. For example the following URL represents the checkout
transaction invoked by a customer with ID 1234:

http://acmeonline.com/store/cust1234/checkout

The default discovery mechanism names this business transaction "/store/cust1234". Ideally, all
the customers performing a checkout operation should also be part of the checkout business
transaction. Therefore, a better approach is to name this transaction "/store/checkout".

To configure the transaction to be named "/store/checkout", use the first segment of the URI and
split that URI using the third segment, thus avoiding the second (dynamic) segment:

Use Multiple Segments in a URI

Sometimes you need to use multiple or non-contiguous segments to globally identify a business
transaction. For example for the following URL it is best to use segments 1,3, and 5:

http://acmeonline.com/user/foo@bar.com/profile/profile2345/edit

You would specify the first segment in the section and specify the others inWhat part of the URI..
the section:Name Transactions dynamically..

Use Parts of HTTP Requests to Automatically Identify Business Transactions

You can configure the global naming for your Servlet based business transactions using headers,
parameters, cookies, and other parts of HTTP requests.

To identify Servlet based business transactions using particular parts of the HTTP request, use

Copyright © AppDynamics 2012-2014 Page 93

the option:Name Transactions dynamically using part of the request

You can "split" the transactions using different parts of your request data like header, URI,
sessions, etc. For more information see .Transaction Splitting for Dynamic Discovery

To modify the automatic global naming for Servlet-based transactions

1. In the left navigation pane click .Configure -> Instrumentation

2. In the Transaction Detection tab select the application or a tier.

3. Click the Java - Transaction Detection sub tab.

4. Expand the Entry Points panel.

5. In the Servlet section, confirm that and Transaction Monitoring Discover Transactions
 are both enabled.automatically for all Servlet requests

6. In the Servlet section, click .Configure Naming

7. In the Servlet Transaction Naming Configuration window, click Name Transactions
. dynamically using part of the request

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-TransactionSplittingforDynamicDiscovery

Copyright © AppDynamics 2012-2014 Page 94

The following sections describe the various options for using parts of the HTTP requests.

Use URI Segment Numbers

You can name your transaction dynamically using URL segments. See Use Different Segments of
.the URI to Automatically Identify Business Transactions

Use HTTP Parameter Values

You can name a business transaction based on the value of a particular parameter in your request
data.

For another example, consider the following URL:

http://acmeonline.com/orders/process?type=creditcard

The ideal naming configuration uses the combination of the parameter value for the parameter
"type" and the last two segments to name the business transaction
"/orders/process.creditcard". This configuration ensures that the credit card orders are
differentiated from other orders.

http://docs.appdynamics.com/display/PRO14S/Servlet+Entry+Points#ServletEntryPoints-UseDifferentSegmentsoftheURItoAutomaticallyIdentifyBusinessTransactions
http://docs.appdynamics.com/display/PRO14S/Servlet+Entry+Points#ServletEntryPoints-UseDifferentSegmentsoftheURItoAutomaticallyIdentifyBusinessTransactions

Copyright © AppDynamics 2012-2014 Page 95

For another example, in dispatcher-style Servlet patterns where the Servlet dispatches requests
based on a query parameter, configure both the URI segments and the dynamic parameter. For
the following URL:

http://acmeonline.com/dispatcher?action=checkout

You can identify the transaction based on the segments and the value of the "action" parameter.
For example:

AppDynamics automatically identifies the business transaction based on the value of the "action"
parameter, "<Segments_of_URI>.checkout".

You can also identify a business transaction based on multiple parameters by providing the
comma-separated names of those parameters.

Use Header Values

Copyright © AppDynamics 2012-2014 Page 96

1.
2.

1.
2.

1.
2.

1.
2.

1.

You can also name your transaction based on the value of header(s) of your request data.

For example, to identify the requests based on "header1" for ACME Online:

Set the URI identification option.
Enable the option and enter the header nameUse header value in transaction names
"header1" .

The business transaction named "<Segments_of_URI>.<header1>".

You can name a business transaction based on multiple headers by providing the
comma-separated names of those headers.

Use a Referer Header

If you are working on any of the following web technologies like Java Servlets, JSP, Struts,
Springs or .NET, and if you would like to know which page has the current requested URL
reference, you can get it by configuring the transactions on the REFERER header.

Set URI identification option.
Enable the option and enter the header nameUse header value in transaction names
"referer" .

This configures names of all transactions using the referring URL.

Use Cookie Values

You can also name your transaction based on the value of a particular cookie in your request data.

For example: For ACME Online, you can identify only those transactions when the "Gold"
customers invoke the checkout operation.

Set the URI identification option.
Enable the option and provide the cookie name.Use cookie value in transaction names

You can name a business transaction based on multiple cookies by providing the
comma-separated names of the cookies.

Use Session Attribute Values

You can name a business transaction based on the value of a particular session attribute key in
your request data.

Set the URI identification option.
Enable the option and provide theUse session attribute values in transaction names
session attribute key.

Use Methods

You can name a business transaction based on the GET/POST/PUT methods.

Set the URI identification option.
Enable the option.Specify request method in transaction names

Use Request Host

You can name a business transaction based on the request host.

Copyright © AppDynamics 2012-2014 Page 97

1.
2.

1.
2.

1.
2.

Set the URI identification option.
Enable the option.Use request host in transaction names

Use Request Originating Address

You can name a business transaction based on the request's originating address.

Set the URI identification option.
Enable the option.Use request originating address in transaction names

Use Custom Expressions

You can use a custom expression to specify the name of business transaction.

Set the URI identification option.
Enter the expression. See . Custom Expressions for Naming Business Transactions

Use Part of an HTTP Parameter Value to Split a Business Transaction

For example, given an HTTP parameter, eventSource, that has values like:

TabBar:AccountTab:AccountTab_AccountNumberSearchItem_Button_act

Assuming getParameter returns a java.lang.string(), you can use the following expression in the A
pply a custom expression on HTTPServletRequest and use the result in Transaction Names
 field:

{getParameter(eventSource).split(":").[0]}

 AppDynamics uses everything up the first colon ':' to name the business transaction, in this
example "TabBar".

Additional Servlet-Based Business Transaction Detection Scenarios

For other detection scenarios see:

Learn More

For more information see:

Custom Naming Configurations for Servlet-Based Business Transactions
Use Parts of HTTP Requests to Name Global Servlet Entry Points
Configure Business Transaction Detection
Group URI Patterns for All Servlet Entry Points
Group URI Patterns for a Custom Servlet

Custom Naming Configurations for Servlet-Based Business Transactions

Custom Match Rules for Specific Contexts
To access business transaction detection custom configuration

Match on HTTP Methods
Match on URIs

Split a URI Using Request Data
Split Based on the First Segments of the URI
Split Based on the Last Segments of the URI
Split Based on URI Segment Numbers
Split Based on Parameter Values

http://docs.appdynamics.com/display/PRO14S/Use+Parts+of+HTTP+Requests+to+Name+Global+Servlet+Entry+Points
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Group+URI+Patterns+for+All+Servlet+Entry+Points
http://docs.appdynamics.com/display/PRO14S/Group+URI+Patterns+for+a+Custom+Servlet

Copyright © AppDynamics 2012-2014 Page 98

Split Based on Header Values
Split Based on Cookie Values
Split Based on an HTTP Method
Split Based on the Request Host
Split Based on the Request Originating Address
Split Based on a Custom Expression

Match on an HTTP GET or POST Parameter
To identify transactions based on the POST parameter

Match on a Header Parameter Name or Value
Match on a Hostname or Port
Match on a Class or Servlet Name
Match on a Cookie Name or Value
Match on Information in the Body of the Servlet Request
Learn More

This topic describes how to configure entry point detection for a particular Servlet-based
transaction using a custom match rule.

To configure at the global application or tier level see Automatic Naming Configurations for
.Servlet-Based Business Transactions

For context see and .Configure Business Transaction Detection Servlet Entry Points

Custom Match Rules for Specific Contexts

To handle situations when web contexts represent different parts of the same business application
and therefore require different naming configurations, use custom match rules for each of the web
contexts or URIs. Custom match rules let you create mutually exclusive business transactions for
specific contexts.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 99

See for general information. Custom Match Rules

You can use the to separate business transactions based on URItransaction splitting option
patterns, request data, or payload.

To access business transaction detection custom configuration

1. From the left navigation pane select .Configure -> Instrumentation

2. Click the tab if it is not already selected.Transaction Detection

3. Select the tier for which you want to configure the transactions or select the application if you
want to configure at the application level. For information about inheritance for transaction
detection, see .Hierarchical Configuration Model

4. Click the Java - Transaction Detection subtab.

5. In the Custom Match Rules panel click (the + sign).Add

6. To configure a rule for Servlets, select the drop-down list and click .Servlet Next

The New Business Transaction Match Rule - Servlet window opens.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-TransactionSplittingforDynamicDiscovery
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model

Copyright © AppDynamics 2012-2014 Page 100

1.
2.

3.

7. Give the rule a name.

8. If you have multiple custom match rules, change the priority based on the evaluation order of
the rule. Higher numbers will evaluate first, with 0 being the last custom rule to be evaluated. For
details see .Sequence and Precedence for Auto-Naming and Custom Match Rules

Match on HTTP Methods

You can use GET, POST, PUT, and DELETE methods to identify a business transaction.

Match on URIs

By default AppDynamics automatically discovers and identifies all Servlet-based business
transactions using the first two segments of the URI. You can or use achange the global default
different pattern for a custom match rule.

A custom rule can match a URI based on one of the following expressions:

Equals
Starts With
Ends With
Contains
Matches Reg Ex
Is in List
Is Not Empty

In addition you can configure a NOT condition:

Split a URI Using Request Data

You can split business transactions by adding attributes to either full or partial URI's for a Servlet
request. You can also append a key-value pair to a URI discovered name. This splits the URI into
a separate transaction.

First you configure the URI match. See the previous section.
Select the Split Transactions using Request Data tab and click the Split Transactions using

optionrequest data .
Provide the details for dynamically splitting based on the following:

First Segments of the URI
Last Segments of the URI
Segment Numbers
Parameter Values

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-SequenceandPrecedenceforAuto-NamingandCustomMatchRules
http://docs.appdynamics.com/display/PRO14S/Servlet+Entry+Points#ServletEntryPoints-DefaultAutomaticNamingIdentificationforServlet-BasedTransactions

Copyright © AppDynamics 2012-2014 Page 101

Header Values
Cookie Values
HTTP Methods
Request Host
Request Originating Address
Use a Custom Expression

Split Based on the First Segments of the URI

Consider the following request URI:

http://acmeonline.com/store/checkout

Note that the "first two segments" is the same as the default global configuration. You may want to
use a similar custom match rule when you have a few different rules and you want to control the
order (Priority) by which the rules execute.

Split Based on the Last Segments of the URI

Consider the following request URI:

http://acmeonline.com/web/store/checkout

Using the default global discovery rules, AppDynamics automatically identifies this business
transaction as: /web/store. However the default does not accurately identify the functionality used
by the store, such as checkout or add to cart etc.

You can reset it to so that the business transaction is namedUse the last 2 segments
"<Name_Of_The_Custom_Rule>.store.checkout".

Copyright © AppDynamics 2012-2014 Page 102

Split Based on URI Segment Numbers

You can name your transaction dynamically using a particular segment number.
 For ACME Online, the checkout operation has following URL:For example:

http://www.acmeonline.com/shopping/customer1234/checkout

To correctly identify the user requests for "checkout" functionality, provide the segment numbers
("1,3"). T <Name_Of_The_Custom_Rhis custom match rule groups all the qualifying requests into a "
ule>.shopping.checkout" transaction.

Copyright © AppDynamics 2012-2014 Page 103

1.

For another example:

Split Based on Parameter Values

You can name a business transaction based on the value of a particular parameter in the request
data.
For example, ACME Online's checkout action results in following URL:

http://acmeonline.com/orders/process?type=creditcard

You want to use the combination of the parameter value for the parameter "type" and the last two
segments to identify a business transaction called "/orders/process.creditcard". This ensures that
the credit card orders are differentiated from other orders.On the "Transaction Match Criteria"
section, select the matching option for URI (in this case, "orders").

Copyright © AppDynamics 2012-2014 Page 104

1.
2.

1.
2.

Define the URI.
For the option, enter the parameter name ("type").Split Transactions using Request Data

This custom rule will group all those requests for which the value of parameter "type" is
"creditcard" into a "<Name_Of_Custom_Rule>.creditcard" business transaction.

A custom rule may also identify other requests that use the same parameter. You can later choose
to .exclude these transactions

You can split based on multiple parameters by entering the comma-separated names of those
parameters.

Split Based on Header Values

You can also name your transaction based on the value of header(s) of your request data,
including the host name.

For example, to identify the requests based on the host name for ACME Online:

Define the URI.
For the option, enterSplit Transactions using Request Data the header name
("Host").

This custom rule will put qualifying requests into a business transaction named

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CreatingExcludeRules

Copyright © AppDynamics 2012-2014 Page 105

1.
2.

"<Name_Of_Custom_Rule>.<Host_Name>".

You can also name your transaction based on multiple headers by entering the comma-separated
names of those headers.

Split Based on Cookie Values

You can also name your transaction based on the value of a particular cookie in your request data.

For example, you can identify only those business transactions where the "Gold" customers invoke
the checkout operation.
To do this, specify a custom rule as follows:

Define the URI.
For the option, enter the name of theSplit Transactions using Request Data
cookie.

This configuration will also return those transactions for which the customer priority is not "Gold".
You can choose to .exclude such transactions

You can also name your transaction based on multiple cookies by providing the comma-separated
names of those cookies.

Split Based on an HTTP Method

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludingBusinessTransactionsfromtheUI

Copyright © AppDynamics 2012-2014 Page 106

1.
2.

1.
2.

1.
2.

You can name a business transaction based on GET/POST/PUT methods.

To do this, specify a custom rule as follows:

Define the URI.
For the option, select Split Transactions using Request Data Use request

.methods (GET/PUT/POST) in the transaction names

Split Based on the Request Host

You canname a business transaction based on the request host.

Define the URI.
For the option, select Split Transactions using Request Data Use request host in

.transaction names

Split Based on the Request Originating Address

You can name a business transaction based on the request's originating address.

Define the URI.
For the option, select Split Transactions using Request Data Use the request

.originating address in transaction names

Split Based on a Custom Expression

You can use a custom expression to name a business transaction.

Copyright © AppDynamics 2012-2014 Page 107

1.
2.

3.

1.
2.
3.
4.
5.

1.
2.

1.
2.

3.

Define the URI.
For the option, select Split Transactions using Request Data Apply a custom

.expression on HTTPServletRequest and use the result in Transaction Names
Enter the custom expression. See .Custom Expressions for Naming Business Transactions

Match on an HTTP GET or POST Parameter

To identify transactions based on the POST parameter

For example, ACME Online's checkout operation for any item in the "Book" category results in a
POST parameter ("itemid") whose value is "Book".

To identify only those requests that belong to a "BuyBook" business transaction, configure the
custom match rule:

In the Transaction Match Criteria tab, define the URI as "/shopping".
In the same tab, check the option.HTTP Parameter
Select .Check for parameter value
Enter the ; in this example it is "itemid".Parameter Name
Set to "Book".Value Equals

With this custom match rule, every time a request matches the custom parameter rule it is
identified as part of the BuyBook business transaction.

Match on a Header Parameter Name or Value

A custom rule can match on a header parameter name.

In the Transaction Match Criteria tab, check .Header
Select and enter the parameter name. Check for parameter existence

A custom rule can match on a header parameter name and value.

In the Transaction Match Criteria tab, check .Header
Select and enter the parameter name. Check for parameter value

Copyright © AppDynamics 2012-2014 Page 108

3.

1.
2.

1.
2.
3.

Enter a based on one of the following expressions:Value

Equals
Starts With
Ends With
Contains
Matches Reg Ex
Is in List
Is Not Empty

Match on a Hostname or Port

A custom rule can match a hostname or port based on one of the following expressions:

Equals
Starts With
Ends With
Contains
Matches Reg Ex
Is in List
Is Not Empty

In addition you can configure a NOT condition.

Match on a Class or Servlet Name

A custom rule can match a class name or Servlet name on one of the following expressions:

Equals
Starts With
Ends With
Contains
Matches Reg Ex
Is in List
Is Not Empty

In addition you can configure a NOT condition.

Match on a Cookie Name or Value

A custom rule can match on a cookie name.

In the Transaction Match Criteria tab, check .Cookie
Select and enter the cookie name. Check for cookie existence

A custom rule can match on the value of a cookie.

In the Transaction Match Criteria tab, check .Cookie
Select and enter the cookie name. Check for cookie value
Enter a based on one of the following expressions:Value

Equals
Starts With
Ends With
Contains

Copyright © AppDynamics 2012-2014 Page 109

Matches Reg Ex
Is in List
Is Not Empty

Match on Information in the Body of the Servlet Request

In certain situations, you might have an application that receives an XML/JSON payload as part of
the POST request.

If the category of processing is a part of the XML/JSON, neither the URI nor the
parameters/headers have enough information to name the transaction. Only the XML contents that
can provide correct naming configuration.
See and Identify Transactions Based on DOM Parsing Incoming XML Payload Identify

.Transactions for Java XML Binding Frameworks

Learn More

Configure Business Transaction Detection
Business Transaction Configuration Methodology for Java
Servlet Entry Points
Automatic Naming Configurations for Servlet-Based Business Transactions

Custom Expressions for Naming Business Transactions

You can create custom expressions to name transactions based on the evaluation of a custom
expression on the HTTPServletRequestObject.

Suppose you want to monitor the HttpServletRequest request variable to identify the names and
values of all the request parameters passed with the request.

The following example shows a custom rule configuration based on the expression:

${getParameter(myParam)}-${getUserPrincipal().getName()}

which evaluates to:

request.getParameter("myParam")+"-"+request.getUserPrincipal()

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 110

You can create a custom expression on the HTTPServletRequest to identify all Servlet based
requests (modify global discovery at the transaction naming level) or for a specific set of requests
(custom rule).

Request Attributes in the Custom Expression

A custom expression can have a combination of any of the following getter chains on the request
attributes:

Getters on Request Attributes Transaction Identification

getAuthType() Use this option to monitor secure (or insecure)
communications.

getContextPath() Identify the user requests based on the portion
of the URI.

getHeader() Identify the requests based on request
headers.

getMethod() Identify user requests invoked by a particular
method.

getPathInfo() Identify user requests based on the extra path
information associated with the URL (sent by
the client when the request was made).

getQueryString() Identify the requests based on the query string
contained in the request URL after the path.

getRemoteUser() Identify the user requests based on the login of
the user making this request.

getRequestedSessionId() Identify user requests based on the session id
specified by the client.

getUserPrincipal() Identify user requests based on the current
authenticated user.

For example, the following custom expression can be used to name the business transactions
using the combination of header and a particular parameter:

${getHeader(header1)-${getParameter(myParam)}

The identified transaction will be named based on the result of following expression in your
application code:

request.getHeader("header1")\+ "-"\+ request.getParameter("myParam")

Advanced Servlet Transaction Detection Scenarios

See also:

Custom Naming Configurations for Servlet-Based Business Transactions

Copyright © AppDynamics 2012-2014 Page 111

Servlet Entry Points
Identify Transactions Based on DOM Parsing Incoming XML Payload

Business Transactions and XML Payload
Identifying the Business Transaction Using the XPath Expression

To configure a custom match rule
Learn More

This topic describes how to identify transactions when an XML is posted to a Servlet.

Business Transactions and XML Payload

The XML contains the naming information for the Business Transaction. The Servlet uses a DOM
parser to parse the posted XML into a DOM object.

Identifying the Business Transaction Using the XPath Expression

For example, the following XML posts an order for three items. The order uses credit card
processing.

<acme>
 <order>
 <type>creditcard</type>
 <item>Item1</item>
 <item>Item2</item>
 <item>Item3</item>
 </order>
<acme>

The URL is:

http://acmeonline.com/store

The doPost method of the Servlet is:

Copyright © AppDynamics 2012-2014 Page 112

public void doPost(HttpServletRequest req, HttpServletResponse resp)

{
DocumentBuilderFactory docFactory =
DocumentBuilderFactory.newInstance();
DocumentBuilder docBuilder = docFactory.newDocumentBuilder();
Document doc = docBuilder.parse(req.getInputStream());

Element element = doc.getDocumentElement();

//read the type of order
//read all the items
processOrder(orderType,items)
.....
}

The XPath expression "//order/type" on this XML payload evaluates to "creditcard".

This value correctly identifies the type of the order and therefore should be used to name the
"Order" transaction.

To identify the Business Transactions in this manner, first configure a custom match rule that
automatically intercepts the method that parses the XML and gets the DOM object.

You use the XPath expression in the custom rule so that it names the transaction, for example
"Store.order.creditcard". Though the name is not obtained until the XML is parsed, AppDynamics
measures the duration of the business transaction to include the execution of the doPost() method.

To configure a custom match rule

1. Navigate to the custom rule section for Servlets.

2. In the tab, specify the URI.Transaction Match Criteria

3. In the tab, enable Split Transactions Using Payloads Split transactions using XML/JSON
.Payload or a Java method invocation

4. Set the split mechanism to .XPath Expressions

5. Enter the XPath expression that you want to set as the Entry Point. The result of the XPath
expression will be appended to the name of the Business Transaction.

Copyright © AppDynamics 2012-2014 Page 113

You can use one or more XPath expressions to chain the names generated for the Business
Transaction.

If the expression does not evaluate to a value, the transaction will not be identified.

Learn More

Servlet Entry Points
Identify Transactions Based on POJO Method Invoked by a Servlet

Using a Java Method to Name a Transaction
To configure the custom match rule

Learn More

Using a Java Method to Name a Transaction

You can use a Java method to name the transaction where:

You might not have a clear URI pattern or
You are using XML/JSON frameworks that are currently not supported by AppDynamics.

The following illustration shows how the Servlet that invokes the POJO method holds the
transaction name.

Copyright © AppDynamics 2012-2014 Page 114

For example, consider the processOrder() method. The order is parsed using any type of method
and eventually when the processOrder() method is invoked, a correct approach to name
transaction is to capture the first parameter to the processOrder() method.

The following URL is used by these requests: . Following code snippethttp://acmeonline.com/store
shows the doPost() method of the Servlet:

public void doPost(HttpServletRequest req, HttpServletResponse resp)

{

//process the data from the sevlet request and get the orderType and the items
processOrder(orderType,item)
.....
}
public void processOrder(String orderType,String item)
{
//process order
}

The processOrder() method has the information which can correctly derive the type of the order
and also the name of the transaction. To identify these requests as a single transaction, configure
a custom match rule.

To configure the custom match rule

1. Go to the custom rule section for Servlet Entry Points

2. In the tab, specify the URI.Transaction Match Criteria

3. In the tab, enable Split transactions using XML/JSONSplit Transactions Using Payload
Payload or a Java method invocation.

4. Select POJO Method Call as the split mechanism .

5. Enter the class and the method name.

6. If the method is overloaded, also specify the details for the arguments.

7. Optionally, you can name your transactions by defining multiple methods in a getter chain in the
Method Call Chain field.

The following screenshot displays the configuration of a custom match rule which will name all the
qualifying requests into a "Store.order.creditcard" transaction:

Copyright © AppDynamics 2012-2014 Page 115

This custom rule ensures that the processOrder method is automatically intercepted.

Although the name is not obtained till the processOrder() method is called, the time for the
transaction will include all of the doGet() method.

In addition to the parameter, you can also specify either the return type or a recursive getter chain
on the object to name the transaction. For example, if the method parameter points to a complex
object like PurchaseOrder, you can use something like getOrderDetails().getType() to correctly
name the transaction.

Learn More

Servlet Entry Points
Identify Transactions for Java XML Binding Frameworks

To Configure the Custom Match Rule
Supported Java XML data binding frameworks
Learn More

The following illustration shows the situation in which an XML is posted to a Servlet. The Servlet

Copyright © AppDynamics 2012-2014 Page 116

uses an XML-to-Java binding framework, such as XMLBeans or Castor, to unmarshal and read
the posted XML payload.

The XML payload contains the naming information for the transactions.

In the following example, an XML payload posts an order for three items. It uses a credit card to
process the order.

The URL is: http://acmeonline.com/store

<acme>
 <order>
 <type>creditcard</type>
 <item>Item1</item>
 <item>Item2</item>
 <item>Item3</item>
 </order>
<acme>

The following code snippet shows the doPost() method of the Servlet:

public void doPost(HttpServletRequest req, HttpServletResponse resp)

{
PurchaseOrderDocument poDoc = PurchaseOrderDocument.Factory.parse(po);

PurchaseOrder po = poDoc.getPurchaseOrder();
\\
String orderType = po.getOrderType();

//read all the items
processOrder(orderType,items)

...

}

After the posted XML is unmarshalled to the PurchaseOrder data object, the getOrderType()
method should be used to identify the type of the order.

To Configure the Custom Match Rule

Copyright © AppDynamics 2012-2014 Page 117

1. Navigate to the custom rule section for .Servlet Entry Points
2. In the tab, specify the URI.Transaction Match Criteria
3. In the tab, check Split transactions using XML/JSONSplit Transactions Using Payload
Payload or a Java method invocation.
4. Select Java XML Binding as the split mechanism.
5. Enter the class name and the method name.

The screenshot below shows a custom match rule which identifies the business transaction for this
example as "Store.order.creditcard":

This custom rule ensures that the method in XMLBeans (which unmarshals XML to Java objects)
is automatically intercepted. It also ensures that the getOrderType() method is applied on the Java
data object only if it is the PurchaseOrder data object.

If the name of the transaction is not on a first level getter on the unmarshalled object, you can also
use a recursive getter chain such as getOrderType().getOrder() to get the name.

Although the transaction name is not obtained until the XML is unmarshalled, the response time
for the transaction is calculated from the doGet() method.

Supported Java XML data binding frameworks

The following Java XML data binding frameworks are supported:

Castor

Copyright © AppDynamics 2012-2014 Page 118

JAXB
JibX
XMLBeans
XStream

Learn More

Servlet Entry Points
Identify Transactions Based on JSON Payload

Example Configuration for a JSON Payload
Learn More

Example Configuration for a JSON Payload

The following illustration shows a JSON payload posted to a Servlet and the Servlet unmarshalls
the payload.

The JSON contains the naming information for the transactions.

For example, the following JSON payload posts an "order" for an item "car" and uses creditcard for
processing the order.
The URL is:

http://acmeonline.com/store

order
:{
type:creditcard,
id:123,
name:Car,
price:23
}}

The following code snippet shows the doPost method of the Servlet:

Copyright © AppDynamics 2012-2014 Page 119

public void doPost(HttpServletRequest req, HttpServletResponse resp)

{

//create JSONObject from servlet input stream

String orderType = jsonObject.get("type");\\

//read the item for the order\\

processOrder(orderType,item)\\

.....\\

}

After the posted JSON payload is unmarshalled to the JSON object, the "type" key is required to
identify the type of the order. In this case, this key uniquely identifies the business transaction.

To configure this rule:

1. Go to the custom rule section for .Servlet Entry Points

2. Under "Transaction Match Criteria" specify the URI.

3. Under "Split Transactions Using Payloads", enable "Split transactions using XML/JSON Payload
or a Java method invocation".

4. Select the split mechanism as "JSON".

5. Enter the JSON object key.

The following screenshot displays the configuration for a custom match rule that will name all the
qualifying requests into a single transaction called "Store.Order.creditcard".

Copyright © AppDynamics 2012-2014 Page 120

6. Set the property "enable-json-bci-rules" to "true" for each node to enable this custom rule. See
.App Agent Node Properties

This configuration ensures that the JSONObject and the get("$JSON_Object_Key") method on this
object are intercepted automatically to get the name of the transaction. Although the transaction
name is not obtained until the JSON object is unmarshalled, the response time for the transaction
will be calculated from the doGet method.

Learn More

Servlet Entry Points
App Agent Node Properties

Identify Transactions Based on URL Segment and HTTP Parameter

This topic describes a method you can use to identify transactions using both a URL Segment and
HTTP Parameter split to get split transactions based on page context or action.

Use Custom Expressions

Use the "Apply a custom expression on HTTPServletRequest and use the result in Transaction
Names" option for Servlet naming with the following expression. Using this method, the transaction
is named immediately.

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 121

1.

2.
3.
4.
5.

6.

7.

${getParameter(myparam)}-${getRequestURI().split(\/).[1,2]}

The above expression generates paramvalue-secondsegment-thirdsegment.

Identify Transactions for Grails Applications

Configure transaction identification for Grails applications by changing the default naming scheme
to use the full URI.

To configure business transactions for a Grails application

On the left hand side navigation of the AppDynamics User Interface, go to Configure ->
.Instrumentation

Select the section.Transaction Detection
Select the tier for which you want to enable identification.
Go to the section.Entry Points
Under the section, click .Servlet Configure Naming
This opens the configuration screen for modifying all the Servlets based transactions.
Select the option.Use the Full URI

Copyright © AppDynamics 2012-2014 Page 122

7.

1.
2.

3.

1.
2.

3.
4.

5.
6.
7.
8.
9.

Save this configuration.

Identify Transactions Based on Web Services

In certain situations Web Services may not correlate. This may occur when your Web Services
have identical names and timestamps.

Additionally, most stacks use their own dispatcher for the JAX WS RI Webservices stack and
because of the "com.sun package" this Servlet does not get instrumented.

To configure web service transactions with identical names and timestamps

Open the <Java App Server Agent_Installation_Directory>/conf/app-agent-config.xml file.
Modify the "override exclude" section in this file to include the filter value
"com.sun.xml.ws.transport.http.servlet.WSServlet".

<bci-processing-excludes>
 <override-system-exclude filter-type="equals"
filter-value="com.sun.xml.ws.transport.http.servlet.WSServlet"/>
</bci-processing-excludes>

Save the file and restart the JVM where these changes were made.
Identify Transactions Based on the JSP Name

To identify transactions based on the name of the JSP being rendered

Create a custom match rule for the Servlets.
On the section, enable the URI option and specify the value asTransaction Match Criteria
'faces'.
This filter will capture all the qualifying requests.
Go to the section.Split Transactions Using Payload
Enable the Split Transactions using the XML/JSON payload or Java method invocation
 option.
Select the option for .POJO Method Call
Specify the name of the class as 'com.sun.faces.application.ViewHandlerImpl'.
Specify the name of the method as 'renderView()'.
Specify the argument index as '1'.
Also, define the Method Call Chain or getter as 'getViewId()'. This name will be appended to
the name of the transaction.

Copyright © AppDynamics 2012-2014 Page 123

This custom rule generates business transactions that are named in the following pattern:
"<Name of the Custom Rule>.<path to jsp>".
You can later rename these business transactions to a more user-friendly name if you like.
Struts Entry Points

Struts-based Transactions
Struts Request Names

Custom Match Rules for Struts Transactions
Exclude Rules for Struts Actions or Methods

Problem When Custom-built Dispatch Servlet is Not Excluded

Struts-based Transactions

When your application uses Struts to service user requests, AppDynamics intercepts individual
Struts Action invocations and names the user requests based on the Struts action names. A Struts
entry point is a Struts Action that is being invoked.

Copyright © AppDynamics 2012-2014 Page 124

AppDynamics supports following versions of Struts:

Struts 1.x
Struts 2.x

Struts Action invocations are typically preceded by a dispatcher Servlet, but identification is
deferred to the Struts Action. This ensures that the user requests are identified based on the Struts
Action and not from the generic URL for Dispatcher Servlet.

The response time for the Struts-based transaction is measured when the Struts entry point is
invoked.

The following figure shows the identification process for Struts Action entry points.

Struts Request Names

When a Struts Action is invoked, by default AppDynamics identifies the request using the name of
Struts Action and the name of the method. All automatically discovered Struts-based transactions
are thus named using the convention <Action Name>.<Method Name>.

For example, if an action called ViewCart is invoked with the SendItems(), the transaction is
named "ViewCart.SendItems".

For Struts 1.x the method name is always "execute".

You can rename or exclude auto-discovered transactions. See Business Transaction List
.Operations

Custom Match Rules for Struts Transactions

For finer control over the naming of Struts-based transactions, use custom match rules.

A custom match rule lets you specify customized names for your Struts-based requests. You can
also group multiple Struts invocations into a single business transaction using custom match rules.
See for information about accessing the configuration screens.Custom Match Rules

The matching criteria for creating the rule are: Struts Action class names, Struts Action names,
and Struts Action method names.

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List#BusinessTransactionsList-BusinessTransactionListOperations
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List#BusinessTransactionsList-BusinessTransactionListOperations
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules

Copyright © AppDynamics 2012-2014 Page 125

Exclude Rules for Struts Actions or Methods

To prevent specific Struts Actions and methods from being monitored add an exclude rule. See Ex
. The criteria for Struts exclude rules are the same as those for custom match rules.clude Rules

Problem When Custom-built Dispatch Servlet is Not Excluded

When a Struts action is called, it can demarcate a transaction as an entry point. AppDynamics
instruments the Struts invocation handler to get the action name because the Struts action is not
an interface. The invocation handler provides the App Agent for Java with the name of the action
being invoked. If the dispatcher Servlet is custom-built and has not been excluded from
instrumentation, the wrong entry point could be instrumented and the business transaction could
be misidentified.

To address this issue, add a custom exclude rule for the dispatcher servlet or add a BCI exclude
for it.
Web Service Entry Points

Web Services-based Transactions
Default Naming
Custom Match Rules for Web Services
Exclude Rules
Transaction Splitting for Web Services Based on Payload

This topic discusses Web Service Entry Points.

Web Services-based Transactions

When your application uses Web Services to service user requests, AppDynamics intercepts the
Web Service invocations and names requests based on the Web Service action names and
operation name. A Web Service entry point is a Web Service end point that is being invoked.

This is relevant only when the Web Service invocation is part of the entry point tier and not in a
downstream tier.

Web Service invocations are usually preceded by a dispatcher Servlet, but identification is
deferred to the Web Service endpoints. This configuration ensures that the requests are identified
based on the Web Service and not based on the generic URL for the dispatcher Servlet.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules

Copyright © AppDynamics 2012-2014 Page 126

Default Naming

When the Web Service end point is invoked, the request is named after the Web Service name
and the operation name.

For example, if a service called CartService is invoked with the Checkout operation, the is named
"CartService.Checkout".

You can rename or exclude these automatically discovered transactions. See Business
.Transaction List Operations

Custom Match Rules for Web Services

You can aggregate different Web Service requests into a single business transaction using the
web service name or the operation name. You do this by creating custom match rules for Web
Services. See for information about accessing the configuration screens.Custom Match Rules

The following example names all operations for the Web Service named "CartService":

Exclude Rules

To exclude specific Web Services or operation names from detection, add an exclude rule. See Ex
. The criteria for Web Service exclude rules are the same as those for custom matchclude Rules

rules.

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List#BusinessTransactionsList-BusinessTransactionListOperations
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List#BusinessTransactionsList-BusinessTransactionListOperations
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules

Copyright © AppDynamics 2012-2014 Page 127

Transaction Splitting for Web Services Based on Payload

1. Disable the Web Service automatic transaction discovery.

2. Disable the following default exclude rules:

Apache Axis Servlet
Apache Axis2 Servlet
Apache Axis2 Admin Servlet

3. Add the custom match rule for Axis or Axis2 Servlet (based on the version being used) and split
the transaction using payload or request depending on the pattern in your scenario.
POJO Entry Points

Considerations for Defining a POJO Entry Point
Defining a POJO Entry Point

To define a POJO Entry Point
Defining an Entry Point for a Method Using the Fully-Qualified Class Name

Defining an Entry Point for Classes that have Methods with Multiple Parameters
Defining an Entry Point for a Method that Extends a Super Class
Defining an Entry Point for a Method Using an Interface
Defining an Entry Point for a Method Using Annotations
Dynamically Identifying POJO Transactions Using Transaction Splitting

Defining an Entry Point based on a Parameter Value
To configure transaction splitting
Using a Method parameter for dynamically naming the transactions

Exclude Rules for POJO Transactions
Identifying a POJO Transaction as a Background Task
Learn More

Not all business processing can be implemented using Web entry points for popular frameworks.
Your application may perform batch processing in all types of containers. You may be using a
framework that AppDynamics does not automatically detect. Or maybe you are using pure Java.

In these situations, to enable detection of your business transaction, configure a custom match
 for a POJO (Plan Old Java Object) entry point. The rule should be defined on therule

class/method that is the most appropriate entry point. Someone who is familiar with your
application code should help make this determination. See Considerations for Defining a POJO

.Entry Point

AppDynamics measures performance data for POJO transactions as for any other transactions.
The response time for the transaction is measured from the POJO entry point, and the remote
calls are tracked the same way as remote calls for a Servlet's Service method.

Considerations for Defining a POJO Entry Point

The POJO entry point is the Java method that starts the transaction.

The most important consideration in defining a POJO entry point is to choose a method that
begins and ends every time the specific business transaction is invoked.

For example, consider the method execution sequence:

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules

Copyright © AppDynamics 2012-2014 Page 128

com.foo.threadpool.WorkerThread.run()
 calls com.foo.threadpool.WorkerThread.runInternal()
 calls com.foo.Job.run()

The first two calls to run() method are the blocking methods that accept a job and invoke it.

The Job.run() method is the actual unit of work, because Job is executed every time the business
transaction is invoked and finishes when the business transaction finishes.

Methods like these are the best candidates for POJO entry points.

Defining a POJO Entry Point

To define a POJO Entry Point

1. Click .Configure -> Instrumentation

2. In the Transaction Detection tab select the tier.

3. Click .Use Custom Configuration for this Tier

4. Scroll down to the Custom Rules panel and click (the plus sign).Add

5. From the Entry Point Type dropdown menu select and click .POJO Next

6. In the window set the criteria for identifyingNew Business Transaction Match Rule - POJO
the entry point.

7. Save the configuration.

 If you are running on IBM JVM v1.5 or v1.6, you must restart the JVM after defining the custom
match rules.

You may optionally refine the naming of a POJO-based transaction by transaction splitting.

See the following sections for examples:

Defining an Entry Point for a Method Using the Fully-Qualified Class Name
Defining an Entry Point for a Method Using a Superclass
Defining an Entry Point for a Method Using an Interface
Defining an Entry Point for a Method Using Annotations
Identify a POJO Transaction as a Background Task

See also .Custom Match Rules

Defining an Entry Point for a Method Using the Fully-Qualified Class Name

For the class named "Foo" and method doWork(), match on the fully-qualified class name and
method name:

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules

Copyright © AppDynamics 2012-2014 Page 129

After you define and save the custom match rule for the POJO transaction, performance data for it
displays in the .Business Transactions List

The name of the POJO-based business transaction is the name of the custom match rule or entry
point definition.

In the example above. AppDynamics shows that the "doWork" method of class "Foo" was invoked
260 times and had an average response time of 678 ms (for the selected time range). Out of the
total invocations, 62 invocations were slow and 22 invocations were very slow (these slow or very
slow identification is based on the thresholds set for the business transaction).

Defining an Entry Point for Classes that have Methods with Multiple Parameters

For example, :we want to instrument one of more methods in the following class

class A
{

 public void m1();

 public void m1(String a);

http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List

Copyright © AppDynamics 2012-2014 Page 130

 public void m1(String a, com.mycompany.MyObject b);

}

To instrument all the methods in the class, create a POJO-based business transaction
match rule as follows:

Match Classes with a Class Name that Equals A
Method Name Equals m1(java.lang.String)
To instrument only the method with one parameter, create a POJO-based business
transaction match rule as follows:

Match Classes with a Class Name that Equals A
Method Name Equals m1(java.lang.String)
To instrument only the method with two parameters, create a POJO-based business
transaction match rule as follows:

Match Classes with a Class Name that Equals A
Method Name Equals m1(java.lang.String, com.mycompany.MyObject)

Defining an Entry Point for a Method that Extends a Super Class

For example, the entry point is based on the com.acme.AbstractProcessor super class, which
defines a process() method, which is extended by its child classes: SalesProcessor,
InventoryProcessor, BacklogProcessor.

Define the custom rule on the method defined in the super class:

Defining an Entry Point for a Method Using an Interface

Define a custom rule matching on an interface named com.acme.IProcessor, which defines a
process() method that is implemented by the SalesProcessor, InventoryProcessor,
BacklogProcessor classes.

Copyright © AppDynamics 2012-2014 Page 131

Defining an Entry Point for a Method Using Annotations

For example, if all processor classes are annotated with "@com.acme.Processor", a custom rule
should be defined using annotation.

By default, in these cases the business transaction started when any process() is invoked is
named Process, based on the name of the custom rule. To refine the transaction name to reflect
the specific method called (Process.SalesProcessor, Process.InventoryProcessor,
Process.BacklogProcessor) use transaction splitting.

Dynamically Identifying POJO Transactions Using Transaction Splitting

By default, when you create a custom match rule for POJO transactions, all the qualifying requests
are identified by the name of the custom match rule.

However, in many situations it is preferable to split POJO-based transactions, especially for nodes
that execute scheduled jobs.

For example, if multiple classes have the same method and are instrumented using the same rule,
when the method is invoked the class name of the instance being invoked can be used to classify
the request.

Copyright © AppDynamics 2012-2014 Page 132

If you split the transaction based on the simple class name, instead of one business transaction
named Process, the transaction that is started when the process() method is invoked is named
based on the rule name combined with the class name: either Process.SalesProcessor,
Process.InventoryProcessor, or Process.BacklogProcessor.

Defining an Entry Point based on a Parameter Value

In some cases you want to split the transaction based on the value of a parameter in the entry
point method. For example, you could configure the split on the following process() method:

public void process(String jobType,String otherParameters...)

where the jobType parameter could be Sales, Inventory or Backlog.

You can name POJO transactions dynamically using the following mechanisms:

method parameter
POJO object instance
fully qualified class name
simple class name
thread ID
thread name
method name
simple class name and method name
full class name and method name

In all cases, the name of the rule is prepended to the dynamically-generated name to form the
business transaction name.

Copyright © AppDynamics 2012-2014 Page 133

To configure transaction splitting

1. In the Transaction Splitting tab of the window,New Business Transaction Match Rule - POJO
click Split POJO Transactions using one of the following mechanisms...

2. Click the mechanism to use to split the transaction.

If you are specifying a method parameter, enter the zero-based parameter index of the
parameter.
If the parameter is a complex type, specify the getter chain to use used to derive the
transaction name.
If you are specifying a POJO object instance, specify the getter chain. See Getter Chains in

.Java Configurations

3. Click .Save

Using a Method parameter for dynamically naming the transactions

Suppose in the ACME Online example, instead of the super-class or interface, the type of the
processing is passed in as a parameter.

For example:

public void process(String jobType,String otherParameters...)

In this case, it would be appropriate to name the transaction based on the value of Job type. This
Job type is passed as the parameter.
To specify a custom rule for method parameter:

1. Specify the details for the custom rule in the tab.Transaction Match Criteria

Copyright © AppDynamics 2012-2014 Page 134

2. Click the tab.Transaction Splitting

3. Click Split POJO Transactions using one of the following mechanisms...

4. Select the option for the method parameter.

5. Specify the details for the parameters.

You can use a getter chain if the parameter is of complex type in order to derive a string value,
which can then be used for the transaction name. See .Getter Chains in Java Configurations

Exclude Rules for POJO Transactions

To prevent configured transaction splitting from being applied in certain situations, create an
exclude rule defined on the output of the transaction splitting.

Copyright © AppDynamics 2012-2014 Page 135

Identifying a POJO Transaction as a Background Task

When you want to specify that a POJO transaction is a background task, check Background Task
.

When a request runs as a background task, AppDynamics reports only Business Transaction
metrics for the request. It does not aggregate response time and calls metrics at the tier and
application levels for background tasks. This is ensures that background tasks do not distort the
baselines for the business application. Also, you can set a separate set of thresholds for
background tasks. See .Background Task Monitoring

Learn More

Identify Transactions Based on POJO Method Invoked by a Servlet
Spring Bean Entry Points

Spring Bean-based Transactions
Default Naming for Spring Bean Requests

To Enable Auto-discovery for Spring Bean entry points
Custom Match Rules for Spring Bean Requests
Exclude Rules Spring Bean Transactions

This topic describes how to configure transaction entry points for Spring Bean requests.

http://docs.appdynamics.com/display/PRO14S/Background+Task+Monitoring

Copyright © AppDynamics 2012-2014 Page 136

Spring Bean-based Transactions

AppDynamics allows you to configure a transaction entry point for a particular method for a
particular bean in your environment. The response time is measured from when the Spring Bean
entry point is invoked.

Default Naming for Spring Bean Requests

When the automatic discovery for a Spring Bean based request is turned on, AppDynamics
automatically identifies all the Spring Beans based transactions and names these transactions
using the following format:

BeanName.MethodName

By default, the transaction discovery for Spring Bean-based requests is turned off.

To Enable Auto-discovery for Spring Bean entry points

1. Access the transaction detection configurations screen and select the tier to configure. See To
Access Business Transaction Detection Configuration

2. In the Spring Bean entry in the Entry Points section check the Automatic Transaction Detection
check box.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration

Copyright © AppDynamics 2012-2014 Page 137

Custom Match Rules for Spring Bean Requests

If you are not getting the required visibility with the auto-discovered transactions, you can create a
custom match rule for a Spring Bean based transaction. See .Custom Match Rules

The following example creates a custom match rule for the placeOrder method in the
orderManager bean.

Exclude Rules Spring Bean Transactions

To exclude specific Spring Bean transactions from detection add an exclude rule. See Exclude

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules

Copyright © AppDynamics 2012-2014 Page 138

. The criteria for Spring Bean exclude rules are the same as those for custom match rules.Rules
EJB Entry Points

EJB-Based Business Transactions
Default Naming for EJB Entry Points

To Enable the Auto-discovery for EJB Transactions
Custom Match Rules for EJB based Transactions
Exclude Rules for EJB Transactions

This topic describes how to configure transaction entry points for the EJB based requests.

EJB-Based Business Transactions

AppDynamics allows you to configure an EJB-based transaction entry point on either the bean
name or method name. The response time for the EJB transaction is measured when the EJB
entry point is invoked.

Default Naming for EJB Entry Points

AppDynamics automatically names all the EJB transactions <EJBName>.<MethodName>. By
default, automatic transaction discovery for EJB transactions is turned off. To get visibility into
these transactions, enable the auto-discovery for EJB based transactions explicitly.

Keep in mind the following before you enable auto-discovery for EJB based transactions:

If the EJBs use Spring Beans on the front-end, the transaction is discovered at the Spring
layer and the response time is measured from the Spring Bean entry point. This is because
AppDynamics supports distributed transaction correlation.
AppDynamics groups all the participating EJB-based transactions (with remote calls) in the
same business transaction. However, if your EJBs are invoked from a remote client where
the App Server Agent is not deployed, these EJBs are discovered as new business
transactions.

To Enable the Auto-discovery for EJB Transactions

1. Access the transaction detection configurations screen and select the tier to configure. See To
.Access Business Transaction Detection Configuration

2. In the EJB entry in the Entry Points section check the Automatic Transaction Detection check

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration

Copyright © AppDynamics 2012-2014 Page 139

box.

Custom Match Rules for EJB based Transactions

If you are not getting the required visibility with auto-discovered transactions, create a custom
match rule for a EJB based transaction. See .Custom Match Rules

The following example creates a custom match rule for the receiveOrder method in the TrackOrder
bean. The transactions are named " ACME_EJB.TrackOrder.receiveOrder".

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRules

Copyright © AppDynamics 2012-2014 Page 140

In addition to the bean and method names, other match criteria that could be used to define the
transaction are the EJB type, class name, superclass name and interface name.

Exclude Rules for EJB Transactions

To exclude specific EJB transactions from detection add an exclude rule. See . TheExclude Rules
criteria for EJB exclude rules are the same as those for custom match rules.
JMS Entry Points

Messaging Entry Points
Default Naming Conventions

To Access the Default Configuration for Messaging Entry Points
Custom Match Rules for Messaging Entry Points

Grouping Example
Message Payload Example

Learn More

This topic discusses messaging entry points configuration.

Messaging Entry Points

When an application uses asynchronous message listeners or message driven beans, such as
JMS or equivalent MQ providers as the primary trigger for business processing on the entry point
tier AppDynamics can intercept the message listener invocations and track them as business
transactions. This is relevant only for the entry point tier.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ExcludeRules

Copyright © AppDynamics 2012-2014 Page 141

You can define messaging entry points for queue listeners to monitor Service Level Agreements
(SLAs). An SLA is often reflected in the rate of processing by a queue listener. When you monitor
a messaging entry point, you can track the rate of processing by a particular queue listener.

Default Naming Conventions

AppDynamics automatically detects and names the messaging entry points. When a message
listener is invoked, the transaction is named after the destination name (the queue name) or the
listener class name if the destination name is not available.

To Access the Default Configuration for Messaging Entry Points

1. Access the business transaction configuration page.
See .To Access Business Transaction Detection Configuration

2. Scroll down to message entry point entry for your framework.

Custom Match Rules for Messaging Entry Points

If you want finer control over naming messaging requests, you can use custom match rules either
to specify names for your messaging entry points or to group multiple queue invocations into a
single business transaction.

See for general information about configuring custom match rules.To Create Custom Match Rules

Grouping Example

The following custom match rule groups all transactions to queues starting with the word "Event"

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CreateCustomMatchRules

Copyright © AppDynamics 2012-2014 Page 142

Message Payload Example

The following custom rule uses message properties (headers) to define the custom match rule.
You can also use the message content. You can also use message properties or message content
to define custom exclude rules to exclude certain messaging entry points from detection.

Learn More

Configure Business Transaction Detection
Binary Remoting Entry Points for Apache Thrift

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 143

Default Naming for Binary Remoting (Thrift) Entry Points
Enabling Auto-discovery for Binary Remoting (Thrift) Entry Points
Creating Custom Match Rules for Binary Remoting (Thrift) Requests

Apache Thrift is a binary remoting protocol. Cassandra uses the Thrift protocol to achieve
portability across programming languages. Applications written in many different languages can
make calls to the Cassandra database using the Thrift protocol.

AppDynamics is preconfigured to detect transaction entry points for Cassandra with Thrift
framework applications.

AppDynamics measures performance data for Thrift transactions as for any other transaction.
Thrift entry points are POJO-based. The response time for the transaction is measured from the
POJO entry point, and the remote calls are tracked the same way as remote calls for a Servlet's
Service method.

Default Naming for Binary Remoting (Thrift) Entry Points

When the automatic discovery for a request using Binary Remoting (Thrift) protocol is enabled,
AppDynamics automatically identifies all the transactions and names them using the following
format:

RemoteInterfaceClassName:MethodName

By default, transaction discovery for Binary Remoting (Thrift)-based request is enabled.

Enabling Auto-discovery for Binary Remoting (Thrift) Entry Points

Binary Remoting (Thrift) entry points are enabled by default, but if you are not seeing them in the T
, you should ensure they have been enabled as follows.ier Flow Map

1. Access the transaction detection configuration window and select the tier to configure. See To
.Access Business Transaction Detection Configuration

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-ToAccessBusinessTransactionDetectionConfiguration

Copyright © AppDynamics 2012-2014 Page 144

2. In the entry of the section, click Binary Remoting Entry Points Automatic Transaction
.Detection

When enabled, you can see Thrift calls from calling tiers to the Cassandra database in the List
 of the . Since the transactions using the Thrift protocol are POJO-based,View Tier Dashboard

they appear as POJO in the Type column.

Creating Custom Match Rules for Binary Remoting (Thrift) Requests

If you are not getting the required visibility with the auto-discovered transactions, you can
configure for specific classes and methods.custom match rules and transaction splitting

To enable detection of your binary remoting business transactions, configure a .custom match rule
The rule should be defined on the class/method that is the most appropriate entry point. Someone
who is familiar with your application code should help make this determination.

A custom match rule lets you specify customized names for your Binary Remoting (Thrift) based
requests. You can also group multiple Thrift invocations into a single business transaction using
custom match rules. See for information about accessing the configurationCustom Match Rules
windows.

http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRulesandTransactionSplitting
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRulesandTransactionSplitting
http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-CustomMatchRulesandTransactionSplitting

Copyright © AppDynamics 2012-2014 Page 145

The matching criteria for creating the custom entry point rule for a Thrift request are the POJO
class name and method name of the business transaction initiating the binary remote call.
Transaction splitting and exclude rules are also supported. For information about and examples of
the various POJO-based business transaction match rules you can create for Binary Remoting
(Thrift), see . The rules for Binary Remoting (Thrift) entry points are consistentPOJO Entry Points
with those for POJO entry points.

CometD Support

CometD is a scalable HTTP-based event routing bus for transporting asynchronous messages
over HTTP. CometD provides both a JavaScript API and Java API and is used for applications
such as multi-player games and chat rooms. AppDynamics supports both the

WebSocket and HTTP long-polling client transports. CometD sends messages to channels and we
can now track messages through the channels.

New rules defined in the agent:

New POJO rules to gather message activity
Business transaction split configuration on the POJO rules to determine which channel the
message was published to, tracks business transaction per channel
New servlet exclude rules - since the CometD Servlet implements the different transports
activity, you need to exclude the Servlets implementing the CometD transports. CometD is
generally contained within a Jetty container, you need to exclude the Jetty container tracking
in order to see the CometD messages contained within the transaction. areCometD servlets
excluded by default. The following are the Jetty Servlet exclude rules:

EQUALS, org.eclipse.jetty.server.handler.ContextHandler
EQUALS, org.eclipse.jetty.servlet.ServletContextHandler
ENDSWITH, jetty.plugin.JettyWebAppContext

http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection#ConfigureBusinessTransactionDetection-Toviewdefaultexcluderules

Copyright © AppDynamics 2012-2014 Page 146

Mule ESB Support

Mule ESB 3.4 and previous releases are supported.

Mule ESB (Enterprise Service Bus) is an integration platform with many different connectors for
integrating applications and supporting service oriented architectures. By default, AppDynamics
detects the Mule ESB endpoint. However, in some situations, you may need to create a servlet

.exclude rule

The App Agent for Java supports Mule ESB as follows:

Tracks Business Transactions to Remote Services and Tiers

No configuration required: The App Agent for Java detects business application calls through
Mule ESB service connections to remote services and tiers. Mule ESB is automatically detected
and continuing tiers are recognized. Asynchronous correlation is enabled by default. Business
transaction naming is dependent on business transaction discovery.

Detects incoming HTTP to the Mule ESB HTTP endpoint when it performs as a servlet

No configuration required: If your application takes the output of the Mule ESB HTTP endpoint
and makes it perform like a servlet, the App Agent for Java detects incoming HTTP to the Mule
HTTP Endpoint as a servlet.

Detects SOAP or RESTful operations beyond the Mule ESB HTTP Endpoint

Servlet Exclude Rule Required: Mule ESB can function as a transport connector.In some cases
the Mule ESB HTTP endpoint is an entry point to another application component. For example, the
Mule ESB HTTP endpoint can be an entry point to an application that ends with a CXF SOAP
service or a JAX-RS RESTful endpoint further in the tier. By default, the App Agent for Java treats
the Mule ESB HTTP output as a servlet, an endpoint in the application and doesn't see the the
CXF SOAP or JAX-RS RESTful operation further in the flow. In order to see the SOAP or RESTful
operation, we need to exclude the Mule ESB HTTP servlet.

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 147

For example, we have an application using Mule ESB services at this URI: http://muleapp1:8080/

 There are some HTTP response servlets on: http://muleapp1:8080/httpResponseService/

 and there is a CXF SOAP endpoint
on: http://muleapp1:8080/webservicenedpoint/

To see the CXF SOAP endpoint, we need to create a servlet exclude rule on
uri:http://muleapp1:8080/webservicenedpoint/

We do not need to create a servlet exclude rule when the Mule ESB HTTP endpoint continues to
another tier or for exit points within Mule ESB.

See also, .Mule ESB Startup Settings
JAX-RS Support

AppDynamics Agent for Java supports Jersey 1.x and 2.x by default. Business transaction entry
points are named using the following app agent node properties:

rest-num-segments
rest-transaction-naming
rest-uri-segment-scheme

Examples

Using Default Settings

By default the business transaction is named using the first two segments of the REST URI and
the name of the HTTP method, separated by a period. The application name part of the URI is not
used.

rest-transaction-naming={rest-uri}.{http-method}

For example, using default settings, when the App Agent for Java detects this REST resource as
an entry point,

 /REST/MyApplication/MyResource/resource
The agent uses the URI of the REST resource to name the business transaction.

The REST resource is accessible using the HTTP method .GET

So, the business transaction name would be,
MyResource/resource.GET
where is the first two segments of the REST URI MyResource/resource
 and GET is the HTTP method.

Using rest-transaction-naming Properties

Using the rest-transaction-naming property, you can name the business transaction using a

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-num
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-transaction
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-rest-uri

Copyright © AppDynamics 2012-2014 Page 148

number of properties. For this example, we'll use the following agent node property:

rest-transaction-naming={class-name}/{method-name}

So, when the App Agent for Java sees a REST resource with a class name of com.company.rest.r
 with a method, it names the business transaction esources.Employees CreateNewEmployee com.

/ .company.rest.resources.Employees CreateNewEmployee

Learn More

App Agent Node Properties Reference

Spring Integration Support

In Spring-based applications, enables lightweight messaging and supportsSpring Integration
integration with external systems via declarative adapters.

The App Agent for Java by default automatically discovers exits for all Spring Integration Release
2.2.0 channels except 'DirectChannel.'

See the below.Sample Application Flow XML

AppDynamics Pro Agent for Java supports tracking application flow through Spring Integration me
. The App Agent for Java Spring Integration support is based on thessaging channels

MessageHandler interface.

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference
http://projects.spring.io/spring-integration/
http://docs.spring.io/spring-integration/docs/2.1.6.RELEASE/reference/html/messaging-channels-section.html
http://docs.spring.io/spring-integration/docs/2.1.6.RELEASE/reference/html/messaging-channels-section.html

Copyright © AppDynamics 2012-2014 Page 149

For pollable channels:

A continuing transaction is tracked if the Spring Integration framework is polling for
messages.

If the application code polls for messages in a loop, the span of each loop iteration is tracked
as a transaction. Tracking begins when the loop begins and end it when the iteration ends.

Entry points

Originating transactions begin with MessageHandler.handleMessage() implementations. If the
incoming message is already recognized by the App Agent for Java then a continuing transaction
is started.

Exit points

Exit points are based on MessageChannel.send(). Most of these message channels are typically
inside the JVM so the Application Flow Maps shows a link from the tier to the message channel
component name (bean name) and back.

Spring Integration Support Customizations

Track Application Flow Before Message Handler is Executed

In cases where a lot of application flow happens before the first MessageHandler gets executed,
you should enable tracking the application flow as follows:

Find a suitable POJO entry point and .configure it
Set the node property to 'false'. This property is set toenable-spring-integration-entry-points
'true' by default.
Restart the application server

Limit Tracking of Looping Pollable Channels

To safeguard against cases where pollableChannel.receive() is not called inside a loop, you
can ensure that the App Agent for Java tracks a pollable channel loop only if it happens inside a
class/method combination similar to that defined in the following example. Configure the spring-int

 node property for each class/method combination that pollsegration-receive-marker-classes
messages in a loop, then only those class/methods identified in this node property are tracked.

class MessageProcessor
{
void process()
{
 while(true)
 {
 Message message = pollableChannel.receive()
 }
}
}

For example, for the loop above, set the spring-integration-receive-marker-classes node property
as follows and restart the application server:

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-enable-spring-integration-entry-points
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-spring-integration-receive-marker-classes
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-spring-integration-receive-marker-classes

Copyright © AppDynamics 2012-2014 Page 150

spring-integration-receive-marker-classes=MessageProcessor/process

Note: The spring-integration-receive-marker-classes node property must be configured before the
method process() gets executed for any changes to take effect. Restart the application server after
setting this property.

Sample Application Flow XML

The following XML specifies the integration flow configuration of the application tracked in the
image above.

Copyright © AppDynamics 2012-2014 Page 151

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <channel id="inputChannel">
 <queue capacity="100"/>
 </channel>

 <channel id="out"/>

 <bridge input-channel="inputChannel" output-channel="out">
 <poller max-messages-per-poll="10" fixed-rate="5000"/>
 </bridge>

 <channel id="outputChannel">
 <queue capacity="100"/>
 </channel>

 <service-activator input-channel="out"
 output-channel="outputChannel"
 ref="helloService"
 method="sayHello"/>

 <channel id="out2">
 <queue capacity="100"/>
 </channel>

 <bridge input-channel="outputChannel" output-channel="out2">
 <poller max-messages-per-poll="10" fixed-rate="5000"/>
 </bridge>

 <beans:bean id="helloService"
class="org.springframework.integration.samples.helloworld.HelloService"/>

</beans:beans>

In the following statements, you can see Spring Integration channels that are recognized and
identified in the Application Flow Map visualized above:

<channel id="out">

<channel id="outputChannel">

Copyright © AppDynamics 2012-2014 Page 152

Instrumenting Apple WebObjects Applications

This document helps you instrument applications written with WebObjects 5.4.3 on OSX 10.9
systems.

After installing WebObjects, you can find most of the artifacts in the following directories:

/Developer/Examples/JavaWebObjects
/Developer/Applications/WebObjects

We will use one of the developer examples in the following section to illustrate how to instrument
an application created with Apple WebObjects.

Instrumenting a Sample App

When you run the HelloWorld application,

/Developer/Examples/JavaWebObjects/HelloWorld,

a script file is generated

/Developer/Examples/JavaWebObjects/HelloWorld/dist/legacy/HelloWorld.woa/HelloWorld.

Open up the generated script
file, /Developer/Examples/JavaWebObjects/HelloWorld/dist/legacy/HelloWorld.woa/HelloWorld, an
d towards the end of the file, line 310 in the following example, you'll see the Java execute line:

Add the standard App Agent for Java arguments to the Java execution script for the HellowWord
applicaiton:

You can configure business transaction name using getter-chains. For more information, see

Getter Chains in Java Configurations
Identify Transactions Based on POJO Method Invoked by a Servlet

Exclude Rule Examples for Java

Exclude Business Transactions Using Exclude Rules
Change the Default Exclude Rule Settings
Use the Next Layer of Application Logic
Use an Exclude Rule as a Filter
Exclude Spring Beans of Specific Packages

Learn More

Exclude Business Transactions Using Exclude Rules

Exclude rules prevent detection of business transactions that match certain criteria. You might
want to use exclude rules in the following situations:

AppDynamics is detecting business transactions that you are not interested in monitoring.
You need to trim the total number of business transactions in order to stay under the agent

Copyright © AppDynamics 2012-2014 Page 153

and controller limits.
You need to substitute a default entry point with a more appropriate entry using a custom
match rule.

You can customize existing rules:

Change the Default Exclude Rule Settings

and/or setting up new rules:

Use the Next Layer of Application Logic
Use an Exclude Rule as a Filter
Exclude Spring Beans of Specific Packages

Change the Default Exclude Rule Settings

AppDynamics has a default set of exclude rules for Servlets. Sometimes you need to adjust the
default exclude rules by disabling a default rule or adding your own exclude rules.

Several entry points are excluded by default as shown here:

Use the Next Layer of Application Logic

When the incoming request starts at some control logic in your code that triggers different
business logic based on payload data, you may prefer the business logic class and method as
your business transaction names. You can exclude the control logic from being identified as the
business transaction, and have the business logic be identified instead.

For example, when the control logic and business logic are built as EJBs, enabling EJB discovery
will result in business transactions based on the control class and method. Instead, you can create
an EJB exclude rule using the match criteria the control class name and thenClass Name Equals
the business logic APIs can be discovered as business transactions. This type of exclude rule
looks similar to this:

Copyright © AppDynamics 2012-2014 Page 154

Use an Exclude Rule as a Filter

Another reason to use an exclude rule is to use it like a filter, where you allow the eligible requests
and ignore everything else.

For example, you want to use default discovery rules. Your application is receiving URI ranges that
start with : /a, /b ... /z, however you want to monitor URIs only when they start with /a and /b. The
easiest way to achieve this is to create a Servlet exclude rule that does a Match : Doesn't Start
With /a or /b as shown here:

Copyright © AppDynamics 2012-2014 Page 155

Exclude Spring Beans of Specific Packages

In this scenario, an application has a couple of Spring Beans of the class java.lang.String and
java.util.ArrayList. Because of this, all instances of these classes are being mismarked as Spring
Beans with the same IDs. To fix this behavior and exclude specific Spring Bean IDs, you can
define an exclude rule as follows:

1. In the left navigation panel, click .Configure -> Instrumentation
2. Select the Transaction Detection tab.
3. Select your tier.
4. Navigate to the Exclude Rules section.
5. Click on "+" to create a new rule and select from the menu.Spring Bean Entry Point Type
6. Provide a name for the exclude rule.
7. In the popup, enable the match criteria, use the option and type the SpringBean ID Equals
Bean ID that you want to exclude from discovery as a business transaction.

Learn More

Business Transaction Configuration Methodology for Java
Configure Business Transaction Detection
Match Rule Conditions
Regular Expressions In Match Conditions

Configure Multi-Threaded Transactions for Java

Default Configuration
Custom Configuration

Managing Thread Correlation Using a Node Property
Enabling and Disabling Asynchronous Monitoring

To Disable the New Method of Asynchronous Monitoring

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Match+Rule+Conditions
http://docs.appdynamics.com/display/PRO14S/Regular+Expressions+In+Match+Conditions

Copyright © AppDynamics 2012-2014 Page 156

To Disable all Asynchronous Monitoring
To Enable Asynchronous Monitoring

Learn More

AppDynamics collects and reports key performance metrics for individual threads in multi-threaded
Java applications. See for details on where theseTrace MultiThreaded Transactions for Java
metrics are reported.

In addition to support for applications written in Java, applications running in the JVM that are
written with Groovy are also supported. Groovy classes can be intercepted, servlets are detected
by default, and exit calls and thread correlation are supported without any additional configuration.

Default Configuration

Classes for multi-threaded correlation are configured in the <excludes> child elements of the
<fork-config> element in the
<App_Server_Agent_Installation_Directory>/conf/app-agent-config.xml file.

The default configuration excludes the java, org, weblogic and websphere classes:

<fork-config>
 <!-- exclude java and org -->
 <excludes filter-type="STARTSWITH" filter-value="com.singularity/"/>
 <excludes filter-type="STARTSWITH"
filter-value="java/,javax/,com.sun/,sun/,org/"/>
 <!-- exclude weblogic and websphere -->
 <excludes filter-type="STARTSWITH"
filter-value="com.bea/,com.weblogic/,weblogic/,com.ibm/,net/sf/,com/mchange/""/>
 . . .

Note: The agent supports package names where the levels in the hierarchy are either separated
by dots (.) or slashes . The agent converts the dots to slashes internally.

Custom Configuration

You can edit the app-agent-config.xml file to exclude additional classes from thread correlation. All
classes not excluded are by default included.

You can also explicitly include sub-packages and subclasses of excluded packages and classes.
Use the <includes> or <include> child element to specify the included packages and classes.

Use the <excludes> and <includes> elements to specify a comma-separated list of classes or
packages. Use the <exclude> and <include> elements to specify a single class or package

Managing Thread Correlation Using a Node Property

You can also configure which classes or packages to include or exclude using a node property.
See and .thread-correlation-classes thread-correlation-classes-exclude

Enabling and Disabling Asynchronous Monitoring

 You should disable monitoring of multi-threaded transactions on all agents if all of your agents

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-thread-correlation-classes
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-thread-correlation-classes-exclude

Copyright © AppDynamics 2012-2014 Page 157

and your controller are not at AppDynamics version 3.6 or higher. The previous methodology for
monitoring asynchronous communications was problematic. You can enable the feature after all of
your agents have been upgraded.

You must restart the agent after you enable or disable this feature.

To Disable the New Method of Asynchronous Monitoring

1. In the left navigation pane click .Configure->Instrumentation->Transaction Detection

2. From the Actions menu in the upper left corner click .Disable Async Monitoring

To Disable all Asynchronous Monitoring

Set the App Agent Node property, to disable asynchronousthread-correlation-classes-exclude
monitoring for all the relevant classes.

thread-correlation-classes-exclude=a,b,c,d,e,f,...z

or

Add the following line under the fork-config section of the app-agent-config.xml file.

<exclude filter-type="REGEX" filter-value=".*"/>

To Enable Asynchronous Monitoring

1. In the left navigation pane click .Configure->Instrumentation->Transaction Detection

2. From the Actions menu in the upper-left corner click .Enable Async Monitoring

Learn More

Configure Business Transaction Detection
App Agent Node Properties

Configure End-to-End Message Transactions for Java

About End-to-End Message Monitoring
Configure End-to-End Performance Monitoring

To enable end-to-end message transaction monitoring
End-to-End Performance Metrics
Learn More

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-thread-correlation-classes-exclude
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 158

1.

2.

About End-to-End Message Monitoring

As described in , AppDynamics can automaticallyConfigure Multi-Threaded Transactions for Java
detect and monitor asynchronous threads spawned in Java and .NET applications as part of a
business transaction. The request response times for such business transactions reflect the length
of time from when the entry point thread receives the request until it responds to the client. In a
highly distributed, asynchronous application, however, this response time doesn't always reflect
the actual amount time it takes to fully process a request.

For example, consider an asynchronous application with an entry point method in a request
handler that spawns multiple threads, including one to serve as the final response handler. The
request handler thread then returns a preliminary response to the client, stopping the clock for
purposes of measuring the response time of the business transaction.

Meanwhile the spawned threads continue to execute until completion, at which point the response
handler generates the final response to the client. In this case, the time it takes for the complete,
logical transaction that the AppDynamics user wants to monitor does not match the reported
response time metric for the business transaction.

End-to-end metrics give you a way to measure the processing time for business transactions for
which response time alone does not reflect the entire request processing workflow. The
end-to-end message metrics show how long it takes to process the end-to-end transactions, the
number of end-to-end transactions per minute, and the number of slow end-to-end message
processing events.

Configure End-to-End Performance Monitoring

To use end-to-end message monitoring, you need to identify a method in your application that acts
as the logical end point in the transaction processing sequence. For our sample response handler,
this could be the method in the response handler that waits for threads to complete, assembles the
response and sends it to the client.

To enable end-to-end message monitoring in AppDynamics:

Make sure that the threads in the logical transaction processing flow are traced by
AppDynamics, including the thread that contains the end-point method. If needed, configure
custom correlation to ensure that all threads are properly traced. For more information, see
in .Configure Multi-Threaded Transactions for Java
Configure the end-to-end message settings in the App Agent for the node that contains the
business transaction entry point, as described here

To enable end-to-end message transaction monitoring

In the application navigation tree, navigate to the node that contains the entry point for the
messages for which you want to measure end-to-end performance.
Click the tab. Agents
If the Agents item is not visible in the tab bar, expand the tab bar, as shown:

Copyright © AppDynamics 2012-2014 Page 159

2.

3.
4.
5.

a.

b.

6.

Click the button. Configure
Click . Use Custom Configuration
Set values for the following agent properties by double-clicking the property and entering
new values for each:

async-transaction-demarcator: Specifies the class name and name for the method
that serves as the termination point for the end-to-end transaction. It should be in the
format: class_name/method_name
end-to-end-message-latency-threshold-millis: Optionally, set a value in milliseconds
that, if exceeded by the time it takes to process an end-to-end message, causes the
transaction to be considered a slow end-to-end message and sends an event to the
Controller.

You can navigate to the settings quickly by filtering the view with "async". For example:

Click to apply your changes. Save

End-to-end latency metrics should now appear for any business transactions that has an entry
point on the configured node and invokes the transaction demarcator method. Values for
end-to-end message transaction performance should also appear in the metric browser view for
the node and for the overall application.

End-to-End Performance Metrics

The overall application performance metrics for end-to-end message transactions are:

Average End to End Latency: The average time in milliseconds spent processing
end-to-end message transactions over the selected time frame.
End to End Messages per Minute: The average number of transactions that are measured
as end-to-end message transactions per minute over the selected time frame.

Copyright © AppDynamics 2012-2014 Page 160

Number of Slow End to End Messages: The number of end-to-end message transactions
that exceeded the configured end-to-end latency threshold over the selected time frame.

For information on how to accessing the overall application performance metrics, see Metric
. Browser

Learn More

Measure Distributed Transaction Performance
Configure Multi-Threaded Transactions for Java

Configure Backend Detection for Java

Types of Exit Points
View the Discovery Rules
Revise Backend Discovery Rules

Change the Default Discovery Rules
Add Backend Discovery Rules
Add Custom Exit Points

Propagate Changes to Other Tiers or Applications
Learn More

To review general information about monitoring databases and remote services (collectively
known as backends) and for an overview of backend configuration see .Backend Monitoring

Types of Exit Points

Each automatically discovered backend type has a default discovery rule and a set of configurable
properties. See the following:

Configure Custom Exit Points for Java
Configurations for Custom Exit Points for Java
HTTP Exit Points for Java
JDBC Exit Points for Java
Message Queue Exit Points for Java
Web Services Exit Points for Java
Cassandra Exit Points for Java
RMI Exit Points for Java
Thrift Exit Points for Java

View the Discovery Rules

To view the discovery rules for an automatically discovered backend, access the backend
configuration window using these steps:

1. Select the application.
2. In the left navigation pane, click .Configure -> Instrumentation
3. Select the tab.Backend Detection
4. Select the application and the tab corresponding to your agent platform (Java, .NET, PHP).

http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Measure+Distributed+Transaction+Performance
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 161

The Automatic Backend Discovery default configurations for that agent are listed.

5. In the Automatic Backend Discovery list, click the backend type to view.
A summary of the configuration appears on the right. For example, the following figure shows that
JMS backends are auto-discovered using the Destination, Destination Type, and Vendor.

Revise Backend Discovery Rules

If the default settings don't give you exactly what you need, you can refine the configuration in the
following ways:

Change the default discovery rules:
Enable or disable one or more of the properties
Use one or more specified segments of a property
Run a regular expression on a property
Execute a method on a property

Add new discovery rules

Add custom exit points

The precise configurations vary according to the backend type. These general features are
configurable:

Discovery Enabled - You can enable and disable automatic discovery for the backend type.
Undiscovered backends are not monitored.

Correlation Enabled - You can enable and disable correlation. Correlation enables
AppDynamics to tag, trace, and learn about application calls to and through the backend to
other remote services or tiers. For example, if a call is made from Tier1 -> Backend1 ->
Tier2, Tier2 knows about the transaction flow because the agent "tags" the outbound call

Copyright © AppDynamics 2012-2014 Page 162

from Backend1 to identify it as related to the same transaction that called Backend1 from
Tier1. If you do not care about activity downstream from the backend, you may want to
disable correlation.

Backend Naming - You can configure how backends are named.

Change the Default Discovery Rules

When you need to revise the default set of discovery rules, in many cases, you can achieve the
visibility you need by making adjustments to the default automatic discovery rules. For some
scenarios, you might want to disable some or all of the default rules and create custom rules for
detecting all your backends. AppDynamics provides flexibility for configuring backend detection.

For example, detection of HTTP backends is enabled by default. In Java environments, HTTP
backends are identified by the host and port and correlation with the application is enabled. To
change the discovery rule for HTTP backends in some way, such as disabling correlation, omitting
a property from the detected name, or using only certain segments of a property in the name, you
edit the HTTP automatic discovery rule.

Review the rules for each exit point to determine the best course of action for your application if
the default discovery rules do not give the results you need for your monitoring strategy.

To change default backend automatic discovery rules

1. From the left-hand navigation panel, select . Then select the Configure -> Instrumentation Bac
 tab and the application or tier you want to configure.kend Detection

2. In the Automatic Backend Discovery list, select the backend type to modify.
The rule summary appears in the Automatic Discovery panel on the right.

3. Click .Edit Automatic Discovery
The Edit Automatic Backend Discovery Rule window appears.

4. For each property that you want to configure:

Select the property in the property list.
Check the property check box to use the property for detection; clear the check box to omit
it.
If you are using the property, choose how the property is used from the drop-down list.

Copyright © AppDynamics 2012-2014 Page 163

If you have a complex property, such as the URL, destination, or a query string, and you
want to eliminate some parts of it or need some additional manipulation you can use an
option from the second drop-down list such as or Run a Regular Expression on it Execute

. Each option has associated configuration parameters. Formethods on it (getter chain)
example, you have options for manipulating the segments of the .URL

5. Check to enable the rule; clear the check box to disable it.Enabled

Copyright © AppDynamics 2012-2014 Page 164

6. Check to enable correlation.Correlation Enabled

7. Click .OK

Add Backend Discovery Rules

AppDynamics provides the additional flexibility to create new custom discovery rules for the
automatically discovered backend types. Custom rules include the following settings:

Name for the custom rule.
Priority used to set precedence for custom rules.
Match Conditions used to identify which backends are subject to the custom naming rules.
Backend Naming Configuration used to name the backends matching the match
conditions.

The window for adding custom discovery rules looks like this:

To create a custom discovery rule for an automatically discovered backend type, use these steps:

1. In the Automatic Backend Discovery list, select the backend type.
The Custom Discovery Rules editor appears in the right panel below the Automatic Discovery
panel.

2. Click (the + icon) to create a new rule or select an existing rule from the list and click theAdd
edit icon to modify one.

Copyright © AppDynamics 2012-2014 Page 165

3. Enter a name for the custom rule.

4. Confirm the settings for and (if applicable).Enabled Correlation Enabled

4. Enter the priority for the custom rule compared to other custom rules for this backend type. The
higher the number, the higher the priority. A value of 0 (zero) indicates that the default rule should
be used.

5. In the next section, configure the match conditions.
Match conditions are used to identify which backends should use the custom rule. Backends that
do not meet all the defined match conditions are discovered according to the default rule.

7. In the next section, configure the naming for the backends matching the rule. The naming
configuration must include the property used by the match condition.

8. Save the configuration.
See specific exit points for examples.

Add Custom Exit Points

When your application has backends that are not automatically discovered, you can enable
discovery using custom exit points. To do this, you need to know the class and method used to
identify the backend. See Configure Custom Exit Points for Java.

Propagate Changes to Other Tiers or Applications

When you have made changes to the backend detection rules, you may want to propagate your
changes to other tiers or applications.

To copy an entire backend detection configuration to all tiers

Copyright © AppDynamics 2012-2014 Page 166

1. Access the backend detection window. See .View the Discovery Rules

2. In the left panel select the application or tier whose configuration you want to copy.

3. Click .Configure all Tiers to use this Configuration

To copy an entire backend detection configuration to another tier or application

1. Access the backend detection window. See .View the Discovery Rules

2. In the left panel select the application or tier whose configuration you want to copy.

3. Click .Copy

4. In the Application/Tier browser, choose the application or tier to copy the configuration to.

5. Click .OK

Learn More

Backend Monitoring
Monitor Databases
Monitor Remote Services
Hierarchical Configuration Model
Configure Custom Exit Points
Configurations for Custom Exit Points for Java

Configure Custom Exit Points for Java

Default Backends Discovered by the App Agent for Java
Configure Custom Exit Points for Java Backends

To create a custom exit point
To split an exit point
To group an exit point
To define custom metrics for a custom exit point
To define transaction snapshot data collected

Learn More

AppDynamics provides default automatic discovery for commonly-used backends. If a backend
used in your environment is not discovered, first compare the list of default backends to determine
whether you need to modify the default configuration. If it is not on the list then configure a custom
exit point according to these instructions.

Default Backends Discovered by the App Agent for Java

The default backends for Java are:

HTTP
JDBC
JMS
Cassandra
IBM MQ
RABBITMQ
RMI
Thrift

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Databases
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points

Copyright © AppDynamics 2012-2014 Page 167

Web Service

To configure a default backend see .Configure Backend Detection for Java

Configure Custom Exit Points for Java Backends

Configure Custom Exit Points

Use custom exit points to identify backend types that are not automatically detected, such as file
systems, mainframes, and so on. For example, you can define a custom exit point to monitor the
file system read method. After you have defined a custom exit point, the backend appears on the
flow map with the type-associated icon you selected when you configured the custom exit point.
You define a custom exit point by specifying the class and method used to identify the
backend. If the method is overloaded, you need to add the parameters to identify the
method uniquely.

You can restrict the method invocations for which you want AppDynamics to collect
metrics by specifying match conditions for the method. The match conditions can be
based on a parameter or the invoked object.

You can also optionally split the exit point based on a method parameter, the return
value, or the invoked object.

You can also configure custom metrics and transaction snapshot data to collect for the
backend.

To create a custom exit point

1. From the left navigation pane, click and select the Configure -> Instrumentation Ba
 tab.ckend Detection

2. Select the application or tier for which you are configuring the custom exit point.

3. Ensure is selected.Use Custom Configuration for this Tier
Backend detection configuration is applied on a hierarchical inheritance model. See Hier

.archical Configuration Model

4. Scroll down to and click (the + icon).Custom Exit Points Add

5. In the window, click the tab if it is notCreate Custom Exit Point Identification
selected.

6. Enter a name for the exit point. This is the name that identifies the backend.

7. Select the type of backend from the drop-down menu.Type

This field controls the icon and name that appears on the flow maps and dashboards.
Some of the values are shown in this screen shot:

http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model
http://docs.appdynamics.com/display/PRO14S/Hierarchical+Configuration+Model

Copyright © AppDynamics 2012-2014 Page 168

If the type is not listed, you can check and enter a string to be used as theUse Custom
name on the dashboards.

8. Configure the class and method name that identify the custom exit point.
If the method is overloaded, check the Overloaded check box and add the parameters.

9. If you want to restrict metric collection based on a set of criteria that are evaluated at
runtime, click and define the match condition(s).Add Match Condition
For example, you may want to collect data only if the value of a specific method
parameter contains a certain value.

10. Click .Save

The following screenshot shows a custom exit point for a Cache type backend. This exit
point is defined on the getAll() method of the specified class. The exit point appears in
flow maps as an unresolved backend named CoherenceGetAll.

Copyright © AppDynamics 2012-2014 Page 169

To split an exit point

1. In the Backend Detection configuration window, click .Add

2. Enter a display name for the split exit point.

3. Specify the source of the data (parameter, return value, or invoked object).

4. Specify the operation to invoke on the source of the data: or Use toString() Use
 (for complex objects).Getter Chain

5. Click .Save

The following example shows a split configuration of the previously created
CoherenceGetAll exit point based on the getCacheName() method of the invoked
object.

Copyright © AppDynamics 2012-2014 Page 170

To group an exit point

You can group methods as a single exit point if the methods point to the same key.

For example, ACME Online has an exit point for NamedCache.getAll. This exit point has
a split configuration of getCacheName() on the invoked object as illustrated in the
previous screen shot.

Suppose we also define an exit point for NamedCache.entrySet. This is another exit
point, but it has the split configuration that has getCacheName() method of the invoked
object.

Copyright © AppDynamics 2012-2014 Page 171

If the getAll() and the entrySet() methods point to the same cache name, they will point
to the same backend.

Matching name-value pairs identify the back-end. In this case, only one key, the cache
name, has to match. So, here both exit points have the same name for the cache and
they resolve to the same backend.

To define custom metrics for a custom exit point

Custom metrics are collected in addition to the standard metrics.

The result of the data collected from the method invocation must be an integer value,
which is either averaged or added per minute, depending on your data roll-up selection.

To configure custom business metrics that can be generated from the Java method
invocation:

1. Click the tab.Custom Metrics

2. Click .Add

3. In the window type a name for the metric.Add Custom Metric

4. Select to specify the source of the metric data.Collect Data From

Copyright © AppDynamics 2012-2014 Page 172

5. Select to specify how the metric data is processed.Operation on Method Parameter

6. Select how the data should be rolled up (average or sum) from the Data Rollup
drop-down menu.

7. Click .Create Custom Metric

To define transaction snapshot data collected

1. Click the tab.Snapshot Data

2. Click .Add

3. In the Add Snapshot Data window, enter a display name for the snapshot data.

4. Select the Collect Data From radio button to specify the source of the snapshot data.

5. Select the Operation on Method Parameter to specify how the snapshot data is
processed.

5. Click .Save

Learn More

Configurations for Custom Exit Points for Java
Configurations for Custom Exit Points for Java

Caching System Backends
Coherence Exit Points

Sample Coherence Exit Point Configuration
Memcached Exit Points

Sample Memcached Exit Point Configuration
EhCache Exit Points

Sample EhCache Exit Point Configuration
SAP Exit Points

Sample SAP Exit Point Configuration
Mail Exit Points

Sample Mail Exit Point Configuration
LDAP Exit Points

Sample LDAP Exit Point Configuration
MongoDB Exit Points

Sample MongoDB Exit Point Configuration
Learn More

This topic describes custom exit point configurations for specific backends in Java environments.
To implement these exit points, create custom exit points using the configuration described. To
learn how to create custom exit points, see .To create a custom exit point

Caching System Backends

Coherence Exit Points

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points#ConfigureCustomExitPoints-Tocreateacustomexitpoint

Copyright © AppDynamics 2012-2014 Page 173

Name of the
Exit Point

Type Method
Name

Match
Criteria for
the Class

Class/Interfa
ce/Superclas
s/Annotation
Name

Splitting
Configuratio
n

Coherence.P
ut

Cache put that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Coherence.P
utAll

Cache putAll that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Coherence.E
ntrySet

Cache entrySet that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Coherence.K
eySet

Cache keySet that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Coherence.G
et

Cache get that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Coherence.R
emove

Cache remove that
implements
an
interface
which

com.tangosol.
net.NamedCa
che

getCacheNa
me()

Sample Exit Point ConfigurationCoherence

Copyright © AppDynamics 2012-2014 Page 174

Memcached Exit Points

Name of the
Exit Point

 Type Method Name Match Criteria
value
for the Class

Class/Interface/
Superclass/Ann
otation Name

Memcached.Add Cache add With a class
name that

 net.spy.memcac
hed.Memcached
Client

Memcached.Set Cache set With a class
name that

 net.spy.memcac
hed.Memcached
Client

Memcached.Rep
lace

 Cache replace With a class
name that

 net.spy.memcac
hed.Memcached
Client

Memcached.Co
mpareAndSwap

 Cache cas With a class
name that

 net.spy.memcac
hed.Memcached
Client

Memcached.Get Cache get With a class
name that

 net.spy.memcac
hed.Memcached
Client

Copyright © AppDynamics 2012-2014 Page 175

Memcached.Re
move

 Cache remove With a class
name that

 net.spy.memcac
hed.Memcached
Client

Sample Memcached Exit Point Configuration

EhCache Exit Points

Name of the
Exit Point

 Type Method
Name

Match
Criteria
value
for the Class

Class/Interfa
ce/
Superclass/
Annotation
Name

Splitting
Configuratio
n

 EhCache.Ge
t

 Cache get With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Put Cache put With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Put
IfAbsent

 Cache putIfAbsent With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Put
Quiet

 Cache putQuiet With a class
name that

 net.sf.ehcach
e.Cache

 getName()

Copyright © AppDynamics 2012-2014 Page 176

 EhCache.Re
move

 Cache remove With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Re
moveAll

 Cache removeAll With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Re
moveQuiet

 Cache removeQuiet With a class
name that

 net.sf.ehcach
e.Cache

 getName()

 EhCache.Re
place

 Cache replace With a class
name that

 net.sf.ehcach
e.Cache

 getName()

Sample Exit Point Configuration EhCache

SAP Exit Points

Name of the
Exit Point

 Type Method Name Match Criteria
value
for the Class

Class/Interface/
Superclass/Ann
otation Name

 SAP.Execute SAP execute With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

Copyright © AppDynamics 2012-2014 Page 177

 SAP.Connect SAP connect With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

 SAP.Disconnect SAP disconnect With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

 SAP.Reset SAP reset With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

 SAP.CreateTID SAP createTID With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

 SAP.ConfirmTID SAP confirmTID With a class
name that

 com.sap.mw.jco
.rfc.MiddlewareR
FC$Client

Sample SAP Exit Point Configuration

Mail Exit Points

Copyright © AppDynamics 2012-2014 Page 178

Name of the
Exit Point

 Type Method Name Match Criteria
value
for the Class

Class/Interface/
Superclass/Ann
otation Name

 MailExitPoint.Se
nd

 Mail Server send With a class
name that

 javax.mail.Trans
port

 MailExitPoint.Se
ndMessage

 Mail Server sendMessage With a class
name that

 javax.mail.Trans
port

Sample Mail Exit Point Configuration

LDAP Exit Points

Name of the
Exit Point

 Type Method Name Match Criteria
value
for the Class

Class/Interface/
Superclass/Ann
otation Name

 LDAPExitPoint.
Bind

 LDAP bind With a class
name that

 javax.naming.dir
ectory.InitialDirC
ontext

 LDAPExitPoint.
Rebind

 LDAP rebind With a class
name that

 javax.naming.dir
ectory.InitialDirC
ontext

Copyright © AppDynamics 2012-2014 Page 179

 LDAPExitPoint.
Search

 LDAP search With a class
name that

 javax.naming.dir
ectory.InitialDirC
ontext

 LDAPExitPoint.
ModifyAttributes

 LDAP modifyAttributes With a class
name that

 javax.naming.dir
ectory.InitialDirC
ontext

 LDAPExitPoint.
GetNextBatch

 LDAP getNextBatch With a class
name that

 com.sun.jndi.lda
p.LdapNamingE
numeration

 LDAPExitPoint.
NextAux

 LDAP nextAux With a class
name that

 com.sun.jndi.lda
p.LdapNamingE
numeration

 LDAPExitPoint.
CreatePooledCo
nnection

 LDAP createPooledCo
nnection

With a class
name that

 com.sun.jndi.lda
p.LdapClientFact
ory

 LDAPExitPoint.
Search

 LDAP search With a class
name that

 com.sun.jndi.lda
p.LdapClientFact
ory

 LDAPExitPoint.
Modify

 LDAP modify With a class
name that

 com.sun.jndi.lda
p.LdapClientFact
ory

Sample LDAP Exit Point Configuration

Copyright © AppDynamics 2012-2014 Page 180

MongoDB Exit Points

Name of
the
Exit
Point

 Type Method
Name

Match
Criteria
value
for the
Class

Class/Int
erface/
Supercla
ss/Annot
ation
Name

Splitting
configuration/
Custom Exit Point
Identifier

Snapsho
t Data

 Collect
Data
From
value for
the
Class

Operatio
n on
Invoked
Object
value for
the

 Class

MongoD
B.Insert

JDBC insert With a
class
name
that

com.mon
godb.DB
Collection

Invoked_
Object.

getDB().g
etName()

Paramete
r_0.toStri
ng()

Copyright © AppDynamics 2012-2014 Page 181

MongoD
B.Find

JDBC find With a
class
name
that

com.mon
godb.DB
Collection

Invoked_
Object.

getDB().g
etName()

Paramete
r_0.toStri
ng()

MongoD
B.Update

JDBC update With a
class
name
that

com.mon
godb.DB
Collection

Invoked_
Object.

getDB().g
etName()

Paramete
r_0.toStri
ng()

MongoD
B.Remov
e

JDBC remove With a
class
name
that

com.mon
godb.DB
Collection

Invoked_
Object.

getDB().g
etName()

Paramete
r_0.toStri
ng()

MongoD
B.Apply

JDBC apply With a
class
name
that

com.mon
godb.DB
Collection

Invoked_
Object.

getDB().g
etName()

Paramete
r_0.toStri
ng()

Sample MongoDB Exit Point Configuration

Copyright © AppDynamics 2012-2014 Page 182

Learn More

Configure Backend Detection (Java)
Configure Custom Exit Points

HTTP Exit Points for Java

Automatic Discovery and Default Naming
HTTP Configurable Properties
Changing the Default HTTP Automatic Discovery and Naming

Examples
HTTP Service

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Exit+Points

Copyright © AppDynamics 2012-2014 Page 183

HTTP Backends With Different Formats
Learn More

This topic explains HTTP exit point configuration. To review general information about monitoring
databases and remote services (collectively known as backends) and for an overview of backend
configuration see . For configuration procedures, see Backend Monitoring Configure Backend

.Detection (Java)

Automatic Discovery and Default Naming

By default, AppDynamics automatically detects and identifies HTTP exit points (backends). HTTP
exit point activity includes all HTTP calls done outside of a web service call. Web service calls are
not considered an HTTP exit point. The Host and Port properties are enabled in the default HTTP
automatic discovery rule. From the enabled properties AppDynamics derives a display name, for
example: "myHTTPHost:5000". By default, AppDynamics groups HTTP backends together on the
application flow map as shown:

Click the HTTP Backends label to see the individual backends listed.

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 184

If you to ungroup the HTTP backends, you can see each separate HTTPedit the flow map
backend and how it uses the default discovery rule for naming.

http://docs.appdynamics.com/display/PRO14S/Flow+Maps#FlowMaps-FlowMaps-Toeditaflowmap

Copyright © AppDynamics 2012-2014 Page 185

HTTP Configurable Properties

You can enable or disable the use of the following properties for HTTP exit points.

Configurable Properties Used by Default
in Detection and Naming

Host Yes

Port Yes

URL No

Query String No

For procedures, see Configure Backend Detection (Java)

Changing the Default HTTP Automatic Discovery and Naming

Depending on exactly what you need to monitor, there may be times when you want to change the
default HTTP configuration. When you see things such as EC2 host names, file paths, and ports in
the backend name, changing the default discovery rule may help. For example, when all the HTTP
backends for a tier or application have a similar format, such as a prefix like "ec2storage", you can
generate the right name and the correct number of backends to monitor by editing the automatic
discovery rule. Doing this enables you to monitor the key performance indicators (KPIs) that are of
most interest to you.

Copyright © AppDynamics 2012-2014 Page 186

Examples

HTTP Service

Consider a scenario with the following HTTP URLs:

http://ec2-17:5400/service1
http://ec2-17:5450/service2
http://ec2-18:5400/service1
http://ec2-18:5450/service2

In this case, measuring performance based on host name would be of no use since the IP
addresses are transient and all performance numbers would be irrelevant after the IP addresses
recycle. Therefore, you want to monitor by service name. To do this you need to avoid using the
Host and Port properties in your configuration and use only the URL property.

1. Edit the rule for HTTP. See Automatic Backend Discovery Configure Backend Detection
 for details on accessing this screen.(Java)

2. First select and disable the use of and .Host Port

3. Then select and enable the property you want to use to uniquely identify the backend. In this
case, select and check .URL Use URL in the Backend Name

4. For the field , select .How will URL be used in the Backend name? Use a segment of it

5. From the segment options drop-down list, select , then specify thatUse the first N Segments
the first segment should be used. In this case the split delimiter is a / (slash). The backend naming
configuration looks similar to the following:

Copyright © AppDynamics 2012-2014 Page 187

A similar technique can be used to strip out some segment of the URL, such as a user name as in
the following URLs:

[http://host:34/create/username1]
[http://host:34/create/username2]

What you care about in this case is the "create" service, so your configuration is the same as in
the previous screen shot.

6. Once you change the configuration, you should delete all HTTP backends. Then, as the agent
rediscovers the backends according to the changed configuration, you see only the service
backends in the flow map.

HTTP Backends With Different Formats

Consider a set of HTTP backends that have different formats, for example, some are prefixed with
ec2storage, some are salesforce.com or localhost and so on,. In this case, you don't change the
automatic discovery rule. Instead you create a custom rule. This is because you need different
rules for the different URL formats as follows:

For format "ec2storage/servicename", you need to use the URL
For format "salesforce.com", you want to use the host name
For the other backends, you might want to use the query string

In some cases, your HTTP backend discovery configuration might consist of a combination of the
default rule and custom rules. A custom rule to handle the "ec2storage" URLs might look similar to
the following:

Copyright © AppDynamics 2012-2014 Page 188

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Remote Services
Configure Backend Detection
Flow Maps

JDBC Exit Points for Java

Auto-Discovery and Default Naming
JDBC Configurable Properties
Changing the Default JDBC Automatic Discovery and Naming

Examples
Multiple Databases from Same Vendor
JDBC with Complex URLs
EC2 Hosted Databases

Learn More

This topic covers JDBC exit point configuration. To review general information about monitoring
databases and remote services (collectively known as backends) and for an overview of backend
configuration see . For configuration procedures, see Backend Monitoring Configure Backend

.Detection (Java)

Auto-Discovery and Default Naming

JDBC backend activity consists of all JDBC calls including inserts, queries, updates, getting

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Backend+Detection
http://docs.appdynamics.com/display/PRO14S/Flow+Maps
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 189

connections from connection pools, and so on. By default, JDBC backends are identified using the
logical properties of the database:

URL
Host name
Port number
Database schema
Version
Vendor

From these properties AppDynamics derives a display name, for example "XE-Oracle DB". You
can see an Oracle JDBC database on the following flow map.

You can see the values of the database properties on the database dashboard.

JDBC Configurable Properties

Copyright © AppDynamics 2012-2014 Page 190

You can enable or disable the use of the following properties for JDBC exit points.

Configurable Properties Property Used by Default
in Detection and Naming

Description

URL Yes JDBC URL provided to the
driver

Host Yes Database host

Port Yes Database port

Database Yes Database schema

Version Yes Database version as reported
by JDBC driver

Vendor Yes Database vendor as reported
by JDBC driver

Changing the Default JDBC Automatic Discovery and Naming

Depending on exactly what you need to monitor, you may want to change the default JDBC
configuration. When you see the same physical database represented as multiple JDBC
databases, you may need to . Doing this enables you to morerevise the automatic discovery rule
effectively monitor the key performance indicators (KPIs) that are of most value to you.

Examples

Multiple Databases from Same Vendor

JDBC connections to the same physical Oracle database (with the same URI) may appear as
multiple backends. In some circumstances, the Vendor property captured for the database is
different. This can happen when different drivers are used to access the database. For example,
you might see JDBC backends with the following vendor names:

Oracle DB
Oracle

If the database driver package name matches the standard Oracle database driver, then the
vendor name used is "Oracle DB". If it doesn't match, then the product name from the database
metadata (using the java.sql.DatabaseMetaData class) is used as a vendor name. So database
calls that use different drivers to reach the same physical database may be detected as separate
databases. You can fix this by disabling the use of the Vendor property in the discovery rule.

JDBC with Complex URLs

In this example, the database URL is configured for high availability, so it is quite long and
complex. Choosing the URL option is the way to go. Disable theRun a regular expression on it
use of the Host and Port properties for JDBC automatic discovery. Instead enable the use of the
URL that appears in the JDBC call, along with a regular expression to get the correct database
naming and discovery.

For example, to extract all the hosts and all the ports from the following URL:

http://docs.appdynamics.com/display/PRO14S/Configure+Backend+Detection+for+Java#ConfigureBackendDetectionforJava-Tochangedefaultbackendautomaticdiscoveryrules

Copyright © AppDynamics 2012-2014 Page 191

jdbc:oracle:thin:@(DESCRIPTION_LIST=(LOAD_BALANCE=OFF)(FAILOVER=ON)(DESCRIPTION=
(ADDRESS_LIST=(LOAD_BALANCE=ON)(ADDRESS=(PROTOCOL=TCP)(HOST=titanpfmcl01)(PORT=1
521)))(CONNECT_DATA=(SERVICE_NAME=trafrefpfm01.global.trafigura.com)))(DESCRIPTI
ON=(ADDRESS_LIST=(LOAD_BALANCE=ON)(ADDRESS=(PROTOCOL=TCP)(HOST=titanpfmcl02)(POR
T = 1521)))(CONNECT_DATA=(SERVICE_NAME=trafrefpfm01.global.trafigura.com))))

This sample is for a string that contains the host and service name twice. You can also use port in
your regular expression if needed by your requirements.

The following regular expression applied to the previous high availability URL results in a backend
name similar to this:
titanpfmcl01-trafrefpfm01.global.trafigura.com-titanpfmcl02-trafrefpfm01.global.trafigura.com.

.*HOST=([^\)]*).*SERVICE_NAME=([^\)]*).*HOST=([^\)]*).*SERVICE_NAME=([^\)]*).*

Note: the expression starts and end with ". to "1,2,3,4".". Set *Regular expression groups
Set the to "-".Merge Delimiter
This configuration looks like this in the UI:

Also see .Regular Expressions In Match Conditions

EC2 Hosted Databases

AppDynamics automatically discovers JDBC backends based on host, port, URL, database,
version and vendor values. To monitor all JDBC databases that contain "EC2" in their host names
as a single database, create a JDBC custom discovery rule and use the following match condition:
Host Contains "EC2" as shown in the following screen shot.

http://docs.appdynamics.com/display/PRO14S/Regular+Expressions+In+Match+Conditions

Copyright © AppDynamics 2012-2014 Page 192

Assuming host names of the format "EC2-segment2-segment3", use the following naming
configuration:

This configuration results in a single database icon on the flow map named "EC2".

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Databases

Message Queue Exit Points for Java

JMS Message Queue Exit Points
JMS Auto-Discovery and Default Naming
JMS Configurable Properties
Changing the Default JMS Automatic Discovery and Naming
Examples

Monitor the Server by Ignoring the JMS Queue Name
Temporary Queues
Session ID in the Queue Name

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Databases

Copyright © AppDynamics 2012-2014 Page 193

IBM Websphere MQ Message Queue Exit Points
IBM Websphere MQ Auto-Discovery and Default Naming
IBM MQ Configurable Properties

Example: Monitor the Server by Ignoring the MQ Queue Name
RabbitMQ Message Queue Exit Points

RabbitMQ Auto-Discovery and Default Naming
RabbitMQ Configurable Properties
Changing the Default RabbitMQ Automatic Discovery and Naming
Example: Monitor the Server by Ignoring the RabbitMQ Queue Name

Learn More

This topic covers message queue exit point configuration, including JMS, IBM MQ, and RabbitMQ.
To review general information about monitoring databases and remote services (collectively
known as backends) and for an overview of backend configuration see . ForBackend Monitoring
configuration procedures, see .Configure Backend Detection (Java)

For a list of supported message-oriented middleware products, see Supported Application Servers
and Portals for the App Agent for Java

JMS Message Queue Exit Points

JMS Auto-Discovery and Default Naming

JMS backend activity includes all JMS message send and publish activity. By default, JMS back
ends are identified using the logical properties of the JMS server, such as: vendor, destination
name, and destination type.

The default configuration uses all three properties of the JMS queue.

From the enabled properties AppDynamics derives a display name, for example,
ActiveMQ-OrderQueue.

The Backend Properties are visible on the Remote Services dashboard.

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedApplicationServersandPortalsfortheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedApplicationServersandPortalsfortheAppAgentforJava

Copyright © AppDynamics 2012-2014 Page 194

JMS Configurable Properties

The following properties can be configured to refine the identification of JMS backends.

Configurable Properties Property Used by Default
in Detection and Naming

Destination Yes

Destination Type Yes

Vendor Yes

Changing the Default JMS Automatic Discovery and Naming

Depending on exactly what you need to monitor, there may be times when you want to change the
default JMS configuration. In most cases, you can generate the right name and the correct number
of backends to monitor by editing the automatic discovery rule. For example, you can disable use
of the Vendor property. If you do, then JMS backends with the same destination and destination
type are identified as the same backend and the metrics for calls with the same destination and
destination type are aggregated into one backend. Changing the default discovery rule can enable
you to monitor the key performance indicators (KPIs) that are of most interest to you.

Examples

Monitor the Server by Ignoring the JMS Queue Name

In this example, the application is making calls to a message server that handles several queues.
The sample destination names look like this:

AccountQ
AccountReplyQ
AccountRecQ
AccountDebitQ

The default automatic discovery rule detects one backend for each unique destination and so the
flow map shows one queue backend for each different queue name. In this example, each of the

Copyright © AppDynamics 2012-2014 Page 195

above would show as a separate backend on the application flow map. If you are interested in
monitoring the performance of the server and not each queue name, you can modify the
configuration to ignore the Destination property and use just the Type and Vendor. This
configuration looks similar to the following:

Temporary Queues

In this example an application creates many temporary JMS response queues that are deleted
after the message is received. By default, Appdynamics discovers these queues separately and
lists each one as a unique remote service. This default behavior probably does not enable
effective monitoring. Instead, you can create a custom JMS discovery rule stating that if the
destination name contains "TemporaryQueue", list it as "WeblogicTempQueue", or whatever name
makes sense in your monitoring environment. In this way, you can monitor the performance that
matters. The configuration to accomplish this is shown in the following screen shot:

Copyright © AppDynamics 2012-2014 Page 196

Session ID in the Queue Name

If your JMS queues use the session ID in the destination, this causes each session to be identified
as a separate backend. In this case, you might not be interested in seeing each queue separately,
and instead want to aggregate everything for the same host and port to the same backend. You
can generate the right name and the correct number of backends to monitor by editing the
automatic discovery rule. Doing this enables you to monitor the key performance indicators (KPIs)
that are of most interest to you.

IBM Websphere MQ Message Queue Exit Points

IBM Websphere MQ Auto-Discovery and Default Naming

IBM MQ, also known as IBM WebSphere MQ and IBM MQSeries, is IBM's message-oriented
middleware similar to JMS. Several additional properties are configurable, such as host and port.
This is useful where you have lots of queues and you want to monitor them based on a subset of
the properties.

IBM MQ Configurable Properties

You can enable or disable the use of the following properties for IBM MQ exit points.

Configurable Properties Property Used by Default
in Detection and Naming

Destination Yes

Copyright © AppDynamics 2012-2014 Page 197

Destination Type Yes

Host Yes

Port Yes

Major Version Yes

Vendor Yes

Example: Monitor the Server by Ignoring the MQ Queue Name

In this example, the application is making calls to a message server that handles several queues.
The sample destination names look like this:

MQhostwest-US:1521
MQhosteast-US:1521
MQhostsouth-US:1521

The default automatic discovery rule detects one backend for each unique destination and so the
flow map shows one queue backend for each different queue name. In this example, each of the
above would show as a separate backend on the application flow map. If you are interested in
monitoring the performance of the server and not each queue name, you can create a discovery
rule that just uses the Host and Port, as follows:

RabbitMQ Message Queue Exit Points

RabbitMQ Auto-Discovery and Default Naming

RabbitMQ is an open source, commercially supported, messaging middleware that runs on many
different operating systems. By default, the App Agent for Java discovers exit points utilizing the
RabbitMQ Java API, which is usually shipped as an amqp-client.jar. By default, RabbitMQ

Copyright © AppDynamics 2012-2014 Page 198

backends are identified by Host, Port, Routing Key, and Exchange. By default, the name would
resemble this:

amqp://guest@127.0.0.1:5672/exchange/task_queue

RabbitMQ Configurable Properties

You can enable or disable the use of the following properties for RabbitMQ exit points.

Configurable Properties Property Used by Default
in Detection and Naming

Host Yes

Port Yes

Routing Key Yes

Exchange Yes

Changing the Default RabbitMQ Automatic Discovery and Naming

You can change the default RabbitMQ automatic discovery attributes by clicking Edit Automatic
.Discovery

A window appears where you can edit the automatic RabbitMQ backend discovery rules.

Example: Monitor the Server by Ignoring the RabbitMQ Queue Name

Configuring properties, such as host and port, is useful where you have lots of queues and want to
monitor the health of the server and not the message queue. In this situation, a discovery rule
using only host and port might be the most useful strategy as follows:

Copyright © AppDynamics 2012-2014 Page 199

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Remote Services
Configure Backend Detection
Flow Maps
AppDynamics eXchange RabbitMQ Monitoring Extension for visibility into the queue.

Web Services Exit Points for Java

Auto-Discovery and Default Naming
Web Services Configurable Properties
Changing the Default Web Service Automatic Discovery and Naming

Examples
Web Services Using HTTP for Transport

Learn More

This topic covers web services exit point configuration. To review general information about
monitoring databases and remote services (collectively known as backends) and for an overview
of backend configuration see . For configuration procedures, see Backend Monitoring Configure

.Backend Detection (Java)

Auto-Discovery and Default Naming

Web service backend activity includes all web service invocations. Web service backends are
identified using the web service name.

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Configure+Backend+Detection
http://docs.appdynamics.com/display/PRO14S/Flow+Maps
http://appsphere.appdynamics.com/t5/AppDynamics-eXchange/RabbitMQ-Monitoring-Extension/idi-p/6037
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 200

Web Services Configurable Properties

Configurable Properties Property Used by Default
in Detection and Naming

Service Yes

URL No

Operation No

Soap Action No

Vendor No

Changing the Default Web Service Automatic Discovery and Naming

Depending on exactly what you need to monitor, there may be times when you want to change the
default configuration. In most cases, you can generate the right name and the correct number of
backends to monitor by editing the automatic discovery rule.

Examples

Web Services Using HTTP for Transport

You can disable automatic discovery of a backend type entirely if this better suits your monitoring
needs. For example, if your web services use HTTP for transport and you are fine with them being
discovered as HTTP backends, you can disable discovery of the Web Service type backends.

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Remote Services

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services

Copyright © AppDynamics 2012-2014 Page 201

Cassandra Exit Points for Java

Auto-Discovery and Default Naming
Cassandra Configurable Properties
Changing the Default Cassandra Automatic Discovery and Naming
Learn More

This topic covers Cassandra exit point configuration. To review general information about
monitoring databases and remote services (collectively known as backends) and for an overview
of backend configuration see . For configuration procedures, see Backend Monitoring Configure

.Backend Detection (Java)

Auto-Discovery and Default Naming

By default, AppDynamics automatically detects and identifies Cassandra databases and
Cassandra CQL3.

Cassandra Configurable Properties

Configurable Properties for
Database

Configurable Properties
for CQL3

Property Used by Default
in Detection and Naming

Host Host Yes

Port Port Yes

transport Yes

keyspace Yes

Changing the Default Cassandra Automatic Discovery and Naming

Depending on what you need to monitor, you can change the default configuration by disabling
one or more properties.

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Configure Backend Detection

RMI Exit Points for Java

Auto-Discovery and Default Naming
RMI Properties
Changing the Default RMI Automatic Discovery and Naming
Learn More

This topic covers Java Remote Method Invocation (RMI) exit point configuration. To review
general information about monitoring databases and remote services (collectively known as
backends) see .Backend Monitoring

Auto-Discovery and Default Naming

The App Agent for Java automatically discovers backends called using the standard Java RMI

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Configure+Backend+Detection
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring

Copyright © AppDynamics 2012-2014 Page 202

API. For a list of supported RMI frameworks, see Supported Application Servers and Portals for
the App Agent for Java

RMI Properties

Configurable Properties Property Used by Default
in Detection and Naming

URL Yes

Changing the Default RMI Automatic Discovery and Naming

Depending on what you need to monitor, you can change the default configuration to use a portion
of the URL.

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Remote Services

Thrift Exit Points for Java

Automatic Discovery and Default Naming
Thrift Configurable Properties
Changing the Default Thrift Automatic Discovery and Naming
Learn More

This topic explains Thrift exit point configuration. To review general information about monitoring
databases and remote services (collectively known as backends) and for an overview of backend
configuration see . For configuration procedures, see Backend Monitoring Configure Backend

.Detection (Java)

Automatic Discovery and Default Naming

By default, AppDynamics automatically detects and identifies Apache Thrift exit points (backends).
See for details.Apache Thrift

Thrift Configurable Properties

You can enable or disable the use of the following properties for Thrift exit points.

Configurable Properties Used by Default
in Detection and Naming

Host Yes

Port Yes

transport Yes

Changing the Default Thrift Automatic Discovery and Naming

Depending on what you need to monitor, you can change the default configuration by disabling
one or more properties.

http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedApplicationServersandPortalsfortheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedApplicationServersandPortalsfortheAppAgentforJava
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://thrift.apache.org/

Copyright © AppDynamics 2012-2014 Page 203

Learn More

Configure Backend Detection (Java)
Backend Monitoring
Monitor Remote Services

Configure Memory Monitoring for Java

See:

Configure and Use Custom Memory Structures for Java
Configure and Use Object Instance Tracking for Java

Configure Automatic Leak Detection for Java

Prerequisites for Automatic Leak Detection
Memory Leaks in a Java Environment
AppDynamics Java Automatic Leak Detection

Automatic Leak Detection Support
Conditions for Troubleshooting Java Memory Leaks

Starting Automatic Leak Detection
To start automatic leak detection on a node

Learn More

This topic helps you understand how to configure automatic leak detection.

Prerequisites for Automatic Leak Detection

Automatic leak detection can only be used with specific JVMs. See .JVM Support

Memory Leaks in a Java Environment

While the JVM's garbage collection greatly reduces the opportunities for memory leaks to be
introduced into a codebase, it does not eliminate them completely. For example, consider a web
page whose code adds the current user object to a static set. In this case, the size of the set grows
over time and could eventually use up significant amounts of memory. In general, leaks occur
when an application code puts objects in a static collection and does not remove them even when
they are no longer needed.

In high workload production environments if the collection is frequently updated, it may cause the
applications to crash due to insufficient memory. It could also result in system performance
degradation as the operating system starts paging memory to disk.

AppDynamics Java Automatic Leak Detection

AppDynamics automatically tracks every Java collection (for example, HashMap and ArrayList)
that meets a set of criteria defined below. The collection size is tracked and a linear regression
model identifies whether the collection is potentially leaking. You can then identify the root cause
of the leak by tracking frequent accesses of the collection over a period of time.

Once a collection is qualified, its size, or number of elements, is monitored for long term growth
trend. A positive growth indicates that the collection as potentially leaking!

Once a leaking collection is identified, the agent automatically triggers diagnostics every 30

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+Java#SupportedEnvironmentsandVersionsforJava-JVMSupport

Copyright © AppDynamics 2012-2014 Page 204

minutes to capture a shallow content dump and activity traces of the code path and business
transactions that are accessing the collection. By drilling down into any leaking collection
monitored by the agent, you can manually trigger Content Summary Capture and Access Tracking
sessions. See Configure Automatic Leak Detection for Java

You can also monitor memory leaks for custom memory structures. Typically custom memory
structures are used as caching solutions. In a distributed environment, caching can easily become
a prime source of memory leaks. It is therefore important to manage and track memory statistics
for these memory structures. To do this, you must first configure custom memory structures. See

.Configure and Use Custom Memory Structures for Java

Automatic Leak Detection Support

Ensure AppDynamics supports Automatic Leak Detection on your JVM. See .JVM Support

Conditions for Troubleshooting Java Memory Leaks

Automatic Leak Detection uses On Demand Capture Sessions to capture any actively used
collections (i.e. any class that implements JDK Map or Collection interface) during the Capture
period (default is 10 minutes) and then qualifies them based on the following criteria:

For a collection object to be identified and monitored, it must meet the following conditions:

The collection has been alive for at least minutes. Default is 30 minutes, configurable withN
the node property.minimum-age-for-evaluation-in-minutes
The collection has at least elements. Default is 1000 elements, configurable with the N mini

 node property.mum-number-of-elements-in-collection-to-deep-size
The collection Deep Size is at least MB. Default is 5 MB, configurable with the N minimum-si

 property.ze-for-evaluation-in-mb
The Deep Size is calculated by traversing recursive object graphs of all the objects in
the collection.

See and .App Agent Node Properties App Agent Node Properties Reference by Type

Starting Automatic Leak Detection

To start automatic leak detection on a node

1. In the left navigation pane, click . The NodeServers -> App Servers -> <tier> -> <node>
Dashboard opens.

2. Click the Memory tab.

3. Click the Automatic Leak Detection subtab.

4. Click .ON

http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-age-for-evaluation-in-minutes
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimumnumberofelementsincollectiontodeepsize
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimumnumberofelementsincollectiontodeepsize
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-size-for-evaluation-in-mb
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-size-for-evaluation-in-mb
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference+by+Type

Copyright © AppDynamics 2012-2014 Page 205

AppDynamics begins to automatically track the top 20 application classes and the top 20 system
(core Java) classes in the heap.

The Automatic Memory Leak dashboard shows:

Collection Size: The number of elements in a collection.

Potentially Leaking: Potentially leaking collections are marked as red. You should start
diagnostic sessions on potentially leaking objects.

Status: Indicates if a diagnostic session has been started on an object.

Collection Size Trend: A positive and steep growth slope indicates potential memory leak.

Tip: To identify long-lived collections compare the JVM start time and Object Creation Time.

If you cannot see any captured collections, ensure that you have correct configuration for detecting
potential memory leaks.

Copyright © AppDynamics 2012-2014 Page 206

Learn More

Troubleshoot Java Memory Leaks
Configure and Use Object Instance Tracking for Java

Prerequisites for Object Instance Tracking
Specifying the Classpath

Starting Object Instance Tracking
To start object instance tracking on a node

Tracking Specific Classes
To track instances of custom classes

Learn More

This topic helps you understand how to configure and use object instance tracking. For more
information about why you may need to configure this, see .Troubleshoot Java Memory Thrash

Prerequisites for Object Instance Tracking

Object Instance Tracking can be used only for Sun JVM v1.6.x and later.
If you are running with the JDK then tools.jar will probably be setup correctly, but if you are
running with the JRE you must add tools.jar to JRE_HOME/lib/ext and restart the JVM for
this feature to start working. You can find the tools.jar file in JAVA_HOME/lib/tools.jar.
In some cases In some cases you might also need to copy libattach.so (Linux) or attach.dll
(Windows) from your JDK to your JRE.
Depending on the JDK version, you may also need to specify the classpath as shown below
(along with other -jar options).

Specifying the Classpath

When using a JDK tool, set the classpath using the -classpath option. This sets the classpath for
the application only. For example:

On Windows

java -classpath <complete-path-to-tools.jar>;%CLASSPATH% -jar myApp.jar

OR

On Unix

java -classpath <complete-path-to-tools.jar>:$CLASSPATH -jar myApp.jar

Alternatively, you can set the CLASSPATH variable for your entire environment. For example:

 On Windows

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

On Unix

CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar

Starting Object Instance Tracking

To start object instance tracking on a node

Copyright © AppDynamics 2012-2014 Page 207

1. In the left navigation pane, click . The NodeServers -> App Servers -> <tier> -> <node>
Dashboard opens.

2. Click the Memory tab.

3. Click the Object Instance Tracking subtab.

4. Click .ON

AppDynamics begins to automatically track the top 20 application classes and the top 20 system
(core Java) classes in the heap.

Tracking Specific Classes

Check against the required set of classes to enable instance tracking for each set. For improved
performance, only the top 20 application classes and the top 20 system (core Java) classes in the
heap are tracked automatically.

Use the Configure Custom Classes to Track option to specify instances of specific classes.

Copyright © AppDynamics 2012-2014 Page 208

Classes configured here are only tracked if their instance count is among the top 1000 instance
counts in the JVM.

To track instances of custom classes

1. In the left navigation pane, click . The NodeServers -> App Servers -> <tier> -> <node>
Dashboard opens.

2. From the Object Instance Tracking subtab, click on theConfigure Custom Classes To Track
rightmost corner of the window.

3. In the Object Instance Tracking - Define Custom Classes to Track section for the tier, click .Add

4. In the Create New Instance Tracker window, check .Enabled

5. Enter the fully-qualified class name of the class to track.

6. Click .Save

You can also access this configuration page by selecting Configuration -> Instrumentation ->
.Memory Monitoring

You can edit or delete the object tracing configuration after it has been created.

Learn More

Troubleshoot Java Memory Thrash
Configure and Use Custom Memory Structures for Java

Custom Memory Structures and Memory Leaks
Using Automatic Leak Detection vs Monitoring Custom Memory Structures

To identify custom memory structures
To Add a Custom Memory Structure

Identifying Potential Memory Leaks

Copyright © AppDynamics 2012-2014 Page 209

1.

2.

Diagnosing memory leaks
Isolating a leaking collection
Access Tracking

Learn More

This topic describes how to configure custom memory structures and monitor large coarse grained
custom cache objects.

AppDynamics provides different levels of memory monitoring for multiple JVMs. Ensure custom
memory structures are supported in your JVM environment. See .JVM Support

Custom Memory Structures and Memory Leaks

Typically custom memory structures are used as caching solutions. In a distributed environment,
caching can easily become a source of memory leaks. AppDynamics helps you to manage and
track memory statistics for these memory structures.

AppDynamics provide visibility into:

Cache access for slow, very slow, and stalled business transactions
Usage statistics, rolled up to the Business Transaction level
Keys being accessed
Deep size of internal cache structures

Using Automatic Leak Detection vs Monitoring Custom Memory Structures

The automatic leak detection feature captures memory usage data for all map and collection
libraries in a JVM session. However, custom memory structures might or might not contain
collections objects. For example, you may have a custom cache or a third party cache like
Ehcache for which you want to collect memory usage statistics. Using custom memory structures,
you can monitor any custom object created by the app and the size data can be traced across
JVM restarts. Automatic leak detection is typically used to identify leaks and custom memory
structures is used to monitor large coarse grained custom cache objects.

The following provides the workflow for configuring, monitoring, and troubleshooting custom
memory structures. You must configure custom memory structures manually.

On the Node Dashboard, use the Automatic Leak Detection, On Demand Capture Session
feature to determine which classes aren't being monitored, for example, custom or third
party caches such as EhCache.

 Configure Custom Memory Structures and then restart the JVM if necessary.

CPU Overhead Caution
Due to high CPU usage, Custom Memory Structures monitoring should only be enabled
while debugging a problem.

Copyright © AppDynamics 2012-2014 Page 210

2.

3.

4.

1.
2.

Turn on Custom Memory Structures monitoring to detect potential memory leaks in the
custom memory structures you have configured.

Drill down into leaking memory structures for details that will help you determine where the
leak is.

To identify custom memory structures

On the Automatic Leak Detection subtab of the Memory tab, click .On
Click to capture information on which classes areStart On Demand Capture Session
accessing which collections objects. Use this information to identify custom memory
structures.

AppDynamics captures the top 1000 classes, by instance count.

To Add a Custom Memory Structure

Copyright © AppDynamics 2012-2014 Page 211

1.
2.

3.
4.

a.

These instructions provide an alternate method to accessing the Custom Memory Structures pane
than the workflow above shows. Use the method that is most convenient to you.

From the left navigation pane select .Configure -> Instrumentation
In the Tier panel, click the tier for which you want to configure a custom memory structure
and then click .Use Custom Configuration for this Tier
On the top menu, click the Memory Monitoring tab.
In the Custom Memory Structures panel, click to add a new memory structure.Add

In the Create Memory Structure window
Specify the configuration name.
Click .Enabled
Specify the discovery method.
The discovery method provides three options to monitor the custom memory
structure. The discovery method determines how the agent gets a reference to
the custom memory structure. AppDynamics needs this reference to monitor the
size of the structure. Select one of the three options for the discovery method:

Discover using Static Field.
Discover using Constructor.
Discover using Method.

In many cases, especially with caches, the object for which a reference is needed is
created early in the life cycle of the application.

Copyright © AppDynamics 2012-2014 Page 212

4.

a.

b.

c.

d.

Example for using static
field

Example for using
Constructor

Example for using
method

public
class
CacheManag
er
{ private
static Map
userCache<
String>
User>; }

Notes: Monitors deep size
of this Map.

public
class
CustomerCa
che
{ public
CustomerCa
che(); }

Notes: Monitors deep size
of CustomerCache
object(s).

public
Class
CacheManag
er{
public
List<Order
>;
getOrderCa
che();
{}
}

Notes: Monitors deep size
of this list.

Restart the JVM after the discovery methods are configured to get the references for
the object.
(Optional) Define accessors.
Click to define the methods used to access the custom memoryDefine Accessors
structure. This information is used to capture the code paths accessing the custom
memory structure.
(Optional) Define the naming convention.
Click . These configurations differentiate between customDefine Naming Convention
memory structures.

There are situations where more than one custom Caches are used, but only few of
them need monitoring. In such a case, use the option to distinguishGetter Chain
amongst such caches. For all other cases, use either value of the field on the object or
a specific string as the object name.
Click to save the configuration.Save

Identifying Potential Memory Leaks

Start monitoring memory usage patterns for custom memory structures. An object is automatically
marked as a potentially leaking object when it shows a positive and steep growth slope. The
Memory Leak Dashboard provides the following information:

The Custom Memory Structures dashboard provides the following information:

Copyright © AppDynamics 2012-2014 Page 213

Class: The name of the class or collection being monitored.
Deep Size (bytes): The upper boundary of memory available to the structure. The
deep size is traced across JVM restarts
% of Current Used Heap: The percentage of memory available for dynamic allocation.
Potentially Leaking: Potentially leaking collections are marked as red. We recommend
that you on potentially leaking objects. start a diagnostic session
JVM Start Time: Custom Memory Structures are tracked across JVM restarts.
Status: Indicates if a diagnostic session has been started on an object.
Deep Size: A positive and steep growth slope indicates potential memory leak.

After the potentially leaking collections are identified, start the diagnostic session.

Diagnosing memory leaks

On the Custom Memory Structures Dashboard, select the class name to monitor and click Drill
 or right-click the class name and select .Down Drill Down

Isolating a leaking collection

Use Content Inspection to identify to which part of the application the collection belongs. It allows
monitoring histograms of all the elements in a particular memory structure. Start a diagnostic

Copyright © AppDynamics 2012-2014 Page 214

session on the object and then follow these steps:

1. Select the Content Inspection tab.

2. Click .Start Content Summary Capture Session

3. Enter the session duration. Allow at least 1-2 minutes for the data to generate.

4. Click to retrieve the session data.Refresh

5. Click a snapshot to view the details about that specific content summary capture session.

Access Tracking

Use Access Tracking to view the actual code paths and business transactions accessing the
memory structure. Start a diagnostic session on the object and follow these steps:

1. Select the Access Tracking tab.

2. Select .Start Access Tracking Session

3. Enter the session duration. Allow at least 1-2 minutes for data generation.

4. Click to retrieve the session data.Refresh

5. Click a snapshot to view the details about that specific content summary capture session.

Copyright © AppDynamics 2012-2014 Page 215

Learn More

Troubleshoot Java Memory Leaks

Configure Background Tasks for Java

Pre-Configured Frameworks for Java Background Tasks
Enabling Automatic Discovery for Background Tasks

To enable discovery for a background task using a common framework
Configuring Background Batch or Shell Files using a Main Method

To instrument the main method of a background task
Learn More

In a Java environment background tasks are detected using POJO entry points. It is the same
basic procedure as defining entry points for business transactions, except that you check the
Background Task check box. For instructions see .Configure Background Tasks

Pre-Configured Frameworks for Java Background Tasks

When enabled, AppDynamics provides discovery for the following Java background-processing
task frameworks:

Quartz
Cron4J
JCronTab
JavaTimer

http://docs.appdynamics.com/display/PRO14S/Configure+Background+Tasks

Copyright © AppDynamics 2012-2014 Page 216

Configure Background Tasks

Enabling Automatic Discovery for Background Tasks

Automatic discovery of background tasks is disabled by default. When you know that
there are background tasks in your application environment and you want to monitor
them, first enable automatic discovery so that AppDynamics will detect the task.

AppDynamics provides preconfigured support for some common frameworks. If your
application is not using one of the default frameworks you can create a custom match
rule.

To enable discovery for a background task using a common framework

1. In the left navigation pane, click .Configure -> Instrumentation

2. On the Transaction Detection tab, select the tier for which you want to enable
monitoring.

3. Click .Use Custom Configuration for this Tier

4. Scroll down to the Custom Match Rules pane.

5. Do one of the following

If you are using a pre-configured framework, select the row of the framework and
click the pencil icon, or double-click on the row to open the Business Transaction
Match Rule window. By default the values are populated with rule name and the
class and method names for the particular framework. Verify that those are the
correct names for your environment.
OR
If you are using a custom framework, select the match criteria and enter the Class
Name and Method Name.

The Background Task check box should be already checked.

6. Check .Enabled

7. Click .Save

The custom match rule for the background task will take effect and the background task
will display in the Business Transaction List.

Once you enable discovery, every background task is identified based on following
attributes:

Implementation class name
Parameter to the execution method name

Configuring Background Batch or Shell Files using a Main Method

Sometimes background tasks are defined in batch or shell files in which the main method triggers
the background processing. In this situation, the response time of the batch process is the duration
of the execution of the main method.

 Instrument the main method only when the duration of the batch process isIMPORTANT:

Copyright © AppDynamics 2012-2014 Page 217

equal to the duration of the main method. Otherwise choose another method that accurately
represents the unit of work for the background process.

To instrument the main method of a background task

1. In the left navigation pane, click .Configure -> Instrumentation

2. In the section select the tier for which you want to instrument the mainTransaction Detection
method.

3. In the section click (the "+" icon).Custom Rules Add

4. From the type drop down list, click .Entry Point POJO

5. Enter a name for the custom rule.

6. Check . Background Task

7. Check .Enabled

8. Enter "main" as the match value for .Method Name

9. Save the changes.

10. To ensure that the name of the script file is automatically picked up as a background task,
configure your Java Agent for that node. See .Configure App Agent for Java for Batch Processes

Learn More

Configure Background Tasks
Configure App Agent for Java for Batch Processes
POJO Entry Points

Import and Export Transaction Detection Configuration for Java

Import and Export Auto-Detected Entry Point Configurations
To import or export the configurations for all the auto-detected entry-points to or from
an application

http://docs.appdynamics.com/display/PRO14S/Configure+Background+Tasks

Copyright © AppDynamics 2012-2014 Page 218

To import or export the configuration for a single auto-detected entry point type to or
from an application
To import or export the configurations for all the auto-detected entry-points to or from
a tier
To import or export the configuration for a single auto-detected entry point type to or
from a tier

Import and Export Custom Match and Exclude Rules
Import and Export Custom Match Rules

To import or export a single custom match rule to or from an application
To import or export a single custom match rule to or from a tier

Import and Export Exclude Rules
To import or export a single exclude rule to or from an application
To import or export a single exclude rule to or from a tier

Overwrite Parameter
Learn More

You can export your transaction detection configurations from one application to another using the
AppDynamics REST API. This capability allows you to re-use transaction detection configurations
in different applications instead of re-configuring each application manually using the
AppDynamics console.

You can export from an application or tier configuration and import to an application or tier
configuration.

This feature is available for Java platforms only.

You can import and export:

auto-detected entry point configurations

Copyright © AppDynamics 2012-2014 Page 219

custom match rules

exclude rules

To export use the HTTP GET method. The URI is the application (and optionally the tier) from
which you are exporting the configuration. The configuration is exported to an xml file. If
necessary, you can edit the xml file before you import it. For example, if you have exported the
configuration of all the auto-detected entry-points and you do not want to import all of them, you
can delete the ones you do not want from the file before you import it.

To import use the HTTP POST method. The URI is the application (and optionally the tier) to
which you are importing the configuration. Use UTF-8 URL encoding of the URI before posting;
for example, do not replace a space (" ") with "%20" in the URI.

For information about overwriting a configuration with the same name see .Overwrite Parameter

Import and Export Auto-Detected Entry Point Configurations

You can import and export all your entry point configurations or one entry point configuration in a
single request. Lists of multiple entry point names are not supported.

For requests that specify a single entry point configuration, the entry-point-type-name is the name
displayed in the Type column of the Entry Points List in the Instrumentation->Transaction
Detection tab in the AppDynamics console.

Copyright © AppDynamics 2012-2014 Page 220

To import or export the configurations for all the auto-detected entry-points to or from an application

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/auto

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/auto

produces the output in .auto_app_all.xml

To import or export the configuration for a single auto-detected entry point type to or from an application

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/auto/<
entry-point-type-name>

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/auto/Servlet

produces the output in .auto_app_servlet.xml

To import or export the configurations for all the auto-detected entry-points to or from a tier

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<tier-n
ame>/auto

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/ECommerce Server/auto/

produces the output in .auto_tier_all.xml

To import or export the configuration for a single auto-detected entry point type to or from a tier

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<tier-n
ame>/auto/<entry-point-type-name>

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/ECommerce Server/auto/Servlet

produces the output in .auto_tier_servlet.xml

Import and Export Custom Match and Exclude Rules

http://docs.appdynamics.com/download/attachments/20187408/auto_app_all.xml?version=1&modificationDate=1394226260000&api=v2
http://docs.appdynamics.com/download/attachments/20187408/auto_app_servlet.xml?version=1&modificationDate=1394226260000&api=v2
http://docs.appdynamics.com/download/attachments/20187408/auto_tier_all.xml?version=1&modificationDate=1394226259000&api=v2
http://docs.appdynamics.com/download/attachments/20187408/auto_tier_servlet.xml?version=1&modificationDate=1394226259000&api=v2

Copyright © AppDynamics 2012-2014 Page 221

The URLs for both the import and export operations are identical.

To create the XML file do one of the following:

EASY: Create the rule on a local controller and export it.

or

DIFFICULT: Write the XML for the rule from scratch using a text editor.

To import the rule to the destination controller, use an HTTP POST operation attaching the XML
file that describes the rule as attachment.

Import and Export Custom Match Rules

You can individual import and export custom match rules for servlet and POJO type entry points.

The custom-rule-name is the name displayed in the custom rule list in
Instrumentation->Transaction Detection tab in the AppDynamics console.

To import or export a single custom match rule to or from an application

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<entry
-point-type-name>/custom/<custom-rule-name>

For example:

http://op2.appdynamics.com/controller/transactiondetection/ACME Book
Store Application/pojo/custom/JavaTimer

produces the output in .custom_app_single.xml

To import or export a single custom match rule to or from a tier

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<tier-n
ame>/<entry-point-type-name>/custom/<custom-rule-name>

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/ECommerce Server/pojo/custom/Quartz

produces the output in .custom_tier_single.xml

Import and Export Exclude Rules

You can import and export exclude rules for servlet and POJO type entry points.

The exclude-rule-name is the name displayed in the exclude rule list in the
Instrumentation->Transaction Detection tab in the AppDynamics console.

To import or export a single exclude rule to or from an application

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<entry

http://docs.appdynamics.com/download/attachments/20187408/custom_app_single.xml?version=1&modificationDate=1394226259000&api=v2
http://docs.appdynamics.com/download/attachments/20187408/custom_tier_single.xml?version=1&modificationDate=1394226259000&api=v2

Copyright © AppDynamics 2012-2014 Page 222

-point-type-name>/<exclude-rule-name>

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/exclude/servlet/Apache Axis Servlet

produces the output in .exclude_app_single

To import or export a single exclude rule to or from a tier

http://<controller-host>:<controller-port>/controller/transactiondetection/<application-name>/<tier-n
ame>/servlet/<exclude-rule-name>

For example:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/ECommerce Server/exclude/servlet/Struts Action
Servlet

produces the output in .exclude_tier_single

Overwrite Parameter

Use the overwrite parameter to overwrite a configuration of the same name. Without this
parameter, if the import encounters a configuration for a component of the same name, the
request will fail.

For example, to import a configuration for a POJO custom match rule named "JavaTimer" to an
application that has an existing "JavaTimer" custom match rule use:

http://op2.appdynamics.com:80/controller/transactiondetection/ACME
Book Store Application/pojo/custom/JavaTimer?overwrite=true

The default is overwrite=false.

Learn More

Configure Business Transaction Detection
Use the AppDynamics REST API
Import and Export Health Rule Configurations

Getter Chains in Java Configurations

Using Getter Chains
Separators in Getter Chains
Escaping Special Characters
Getter Chain Examples
Braces Enclosing Getter Chains

http://docs.appdynamics.com/download/attachments/20187408/exclude_app_single?version=1&modificationDate=1394226259000&api=v2
http://docs.appdynamics.com/download/attachments/20187408/exclude_tier_single?version=1&modificationDate=1394226259000&api=v2
http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Use+the+AppDynamics+REST+API
http://docs.appdynamics.com/display/PRO14S/Import+and+Export+Health+Rule+Configurations

Copyright © AppDynamics 2012-2014 Page 223

Learn More

This topic provides some guidance and examples of the correct syntax for using getter chains in
AppDynamics configurations.

Using Getter Chains

You can use getter chains to:

Create a new JMX Metric Rule and define metrics from MBean attributes. See MBean
.Getter Chains and Support for Boolean and String Attributes

Configure method invocation data collectors. See Configure Data Collectors#To use a getter
.chain to specify the data collection on method invocation

Define a new business transaction custom match rule that uses a POJO object instance as
the mechanism to name the transaction. See .POJO Entry Points
Configure a custom match rule for servlet entry points and name the transaction by defining
methods in a getter chain. See Identify Transactions Based on POJO Method Invoked by a

.Servlet

Note: If a getter chain calls on a method that does a lot of processing, such as making numerous
SQL calls, it can degrade the performance of the application and the App Agent for Java. Ideally,
use getter chains only with simple MBean gets.

An example of a simple getter would be just getting a property from a bean, such as getName().

public class MyBean
{
private String name;
public void setName(String name)
{ this.name = name; }
public String getName()
{ return this.name; }
public String getValue()
{ // Open up a database connection and run a big query // Process the
result set performing some complex maths on the data // etc. return
calculatedValue; }
}

Separators in Getter Chains

The following special characters are used as separators:

comma (,) for separating parameters
forward slash (/) for separating a type declaration from a value in a parameter
Dot (.) for separating the methods and properties in the getter chain
Dot (.) when representing "anything" must be escaped.

Escaping Special Characters

If a slash or a comma character is used in a string parameter, use the backslash (\) escape
character.

http://docs.appdynamics.com/display/PRO14S/Configure+Data+Collectors#ConfigureDataCollectors-Touseagetterchaintospecifythedatacollectiononmethodinvocation
http://docs.appdynamics.com/display/PRO14S/Configure+Data+Collectors#ConfigureDataCollectors-Touseagetterchaintospecifythedatacollectiononmethodinvocation

Copyright © AppDynamics 2012-2014 Page 224

If a literal dot (.) is used in a string parameter, use the backslash escape character before
the dot. For example, a dot (.) when representing any character must be escaped using the
backslash (\) escape character.

For example, in the following getter chain, both the backslash (\) and the dot (.) are escaped.

getHeader(hostid).split(\\\.).[1]

Getter Chain Examples

Getter chain with integer parameters in the substring method using the forward slash as the
type separator:

getAddress(appdynamics, sf).substring(int/0, int/10)

Getter chain with various non-string parameter types:

getAddress(appdynamics, sf).myMethod(float/0.2, boolean/true,
boolean/false, int/5)

Getter chain with forward slash escaped; escape character needed here for the string
parameter:

getUrl().split(\/) # node slash is escaped by a backward slash

Getter chain with an array element:

getUrl().split(\/).[4]

Getter chain with multiple array elements separated by commas:

getUrl().split(\/).[1,3]

Getter chain retrieves property values, such as the length of an array:

getUrl().split(\.).length

Getter chain using backslash to escape the dot in the string parameter;
the call is getParam (a.b.c).

Copyright © AppDynamics 2012-2014 Page 225

getAddress.getParam(a\.b\.c\.)

In the following getter chain, the first dot requires an escape character because it is in a
string method parameter (inside the parentheses). The second dot does not require an
escape character because it is not in a method parameter (it is outside the parentheses).

getName(suze\.smith)getClass().getSimpleName()

The following getter chain is from a transaction splitting rule on URIs that use a semicolon
as a delimiter; for example:

/my-webapp/xyz;jsessionid=BE7F31CC0235C796BF8C6DF3766A1D00?act=Add&uid=c42ab
7ad-48a7-4353-bb11-0dfeabb798b5

The getter chain splits on the API name, so the resulting split transactions are "API.abc",
API."xyz" and so on.

The call gets the URI using getRequestURI() and then splits it using the escaped forward
slash. From the resulting array it takes the third entry (as the split treats the first slash as a
separator) and inserts what before the slash (in this case, nothing) into the first entry. Then it
splits this result using the semicolon, getting the first entry of the resulting array, which in this
case contains the API name.

getRequestURI().split(\/).[2].split(;).[0]

Tip: When using string.split(), remember that it takes a regex and you have to escape any special
regex characters.

For example, if you want to split on left square bracket ([):

Java syntax: split("
[")
Getter chain syntax: split([)

Braces Enclosing Getter Chains

In most cases braces are not used to enclose getter chains in AppDynamics configurations.
An exception is the use of a getter chain in a custom expression on the HTTPRequest object.

Custom expressions on the HTTP request are configurable in the Java Servlet Transaction
Naming Configuration window and in the Split Transactions Using Request Data tab of the servlet
custom match and exclude rules. In these cases, braces are required to delineate the boundaries
of the getter chains.

Copyright © AppDynamics 2012-2014 Page 226

Getter chains in custom expressions on the HTTP request in diagnostic data collector should also
be enclosed in braces:

Copyright © AppDynamics 2012-2014 Page 227

Learn More

Configure Business Transaction Detection
Configure Data Collectors

Code Metric Information Points for Java

Code Metric Information Points for Java System Classes
To instrument a Java system class
Learn More

Code Metric Information Points for Java System Classes

System classes like java.lang.* are by default excluded by AppDynamics. To enable
instrumentation for a system class, use code metric information points.

The overhead of instrumenting Java system classes is based on the number of calls.
AppDynamics recommends that you instrument only a small number of nodes and monitor the
performance for these nodes before adding configuring all the nodes in your system.

To instrument a Java system class

1. Open the <agent_home>/conf/app-agent-config.xml file for the node where you want to enable
the metric.

2. Add the fully-qualified system class name to the override exclude section in the XML file. For
example, to configure the java.lang.Socket class connect method, modify following element:

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO14S/Configure+Data+Collectors

Copyright © AppDynamics 2012-2014 Page 228

<override-system-exclude filter-type="equals" filter-value="java.lang.Socket"/>

3. Restart those JVMs for which you have modified the XML file.

Learn More

Code Metrics
Configure Code Metric Information Points

Configure JMX Metrics from MBeans
JMX Metric Rules and Metrics

Using the JMX Metric Rules Configuration
Panel
Using the MBean Browser to Add an MBean
Attribute

To create a metric from an MBean
attribute in the MBean Browser

Learn More

Utilizing JMX Metrics in
Troubleshooting

This topic describes how to create persistent JMX metrics from MBean attributes.

There are two ways to add MBean metrics:

Using the JMX Metric Rules Configuration Panel for multiple attributes

Using the MBean Browser to Add an MBean Attribute for specific attributes

For background information about creating JMX metrics see and Monitor JVMs Monitor JMX
.MBeans

JMX Metric Rules and Metrics

A JMX Metric Rule maps a set of MBean attributes from one or more MBeans into AppDynamics
persistent metrics. You configure a metric rule that creates one or more metrics in the
AppDynamics system. You may want to create new metrics if the preconfigured metrics do not
provide sufficient visibility into the health of your system.

After the MBean attribute is configured to provide a persistent metric in AppDynamics, you can use

http://docs.appdynamics.com/display/PRO14S/Code+Metrics
http://docs.appdynamics.com/display/PRO14S/Configure+Code+Metric+Information+Points
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html

Copyright © AppDynamics 2012-2014 Page 229

1.
2.
3.

it to configure health rules. For details see .Health Rules

To view the MBeans that are reporting currently in your managed environment use the Metric
.Browser

You can use the or the to create new metrics.JMX Metrics Rules Panel Using the MBean Browser
MBean query expressions are supported.

Using the JMX Metric Rules Configuration Panel

The JMX Metric Rules Panel is the best way to create metrics for multiple attributes based on the
same MBean or for complex matching patterns.

In the left navigation pane, click .Configure -> Instrumentation
Click the tab.JMX
In the J panel, click the Java platform for which you areMX Metric Configurations
configuring metrics.

4. In the panel, click the (the + icon). The # panel opens. The JMX Metric Rules Add New Rule
rule is given the next incremented number.

5. Provide the name and settings for this rule:

The is the identifier you want to display in the UI.Name

Required User Permissions
In order to configure new JMX Metrics your user account must have "Configure JMX"
permissions for the application.
For information about configuring user permissions for applications, see To

.Configure the Default Application Permissions

http://docs.appdynamics.com/display/PRO14S/Health+Rules
http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions

Copyright © AppDynamics 2012-2014 Page 230

An is used for excluding existing rules, so leave the default option.Exclude Rule No
Enabled means that you want this rule to run, so leave it selected.
The is the category as shown in the Metric Browser where the metrics will beMetric Path
displayed. A metric path groups the metrics and is relative to the Metric Browser node.

For example, the following screenshot displays how the JMX Metric Rule
"Tomcat_HttpThreadPools" is defined for the ACME Online demo. The metric path is "Web
Container Runtime", the category on Metric Browser where all metrics configured under the
"Tomcat_HttpThreadPools" Metric Rule will be available.

6. In the subpanel, add matching criteria to identify the MBeans that you want to monitor.MBeans

The is the Java domain. This property must be the exact name; no wildcardDomain name
characters are supported.
The is the full object name pattern. The property may containObject Name Match Pattern
wildcard characters, such as the asterisk for matching all the name/value pairs. For
example, specifying "jmx:type=Hello,*" matches a JMX MBean ObjectName,
"jmx:type=Hello,name=hello1,key1=value1".
The is the MBean ID.Instance Identifier

The is optional for more complex matching. Use oneAdvanced MBean Matching Criteria
of the following:

any-substring
final-substring
equals
initial-substring

Click . Add Condition

For example, the following screenshot displays the MBean matching criteria for the

Copyright © AppDynamics 2012-2014 Page 231

"Tomcat_HTTPThreadPools" rule.

For all MBeans that match the preceding criteria, you can define one or more metrics for the
attributes of those MBeans.

7. In the panel click to specify the MBean attributes.Attributes Add Attribute

8. Provide the name of the attribute and the metric name.
The metric name is used to represent the metric in the Metric Browser.

9. If needed, specify Advanced properties for the attribute.

Metric Getter Chain Expressions can be executed against any value. In addition, getter
chains for Strings and Booleans are supported using implicit conversion. See MBean Getter

.Chains and Support for Boolean and String Attributes
Metric Time Rollup determines how the metric will be aggregated over a period of time.
You can choose to either average or sum the data points, or use the latest data point in the
time interval.
Metric Cluster Rollup defines how the metric will be aggregated for a tier, using the
performance data for all the nodes in that tier. You can either average or sum the data.
Metric Aggregator Rollup defines how the Agent rolls up multiple individual measurements
(observations) into the observation that it reports once a one minute. For performance
reasons, Agents report data to the Controller at one minute intervals. Some metrics, such as
Average Response Time, are measured (observed) many times in a minute. The Metric
Aggregator Rollup setting determines how the Agent aggregates these metrics. You can
average or sum observations on the data points or use the current observation. Alternatively
you can use the delta between the current and previous observation.

10. Click to define another metric from the same MBean.Add Attribute

11. Click .Create JMX Rule

The following screenshot shows how the MBean attributes configured for the
Tomcat_HttpThreadPools rule will be displayed in the Metric Browser.

Copyright © AppDynamics 2012-2014 Page 232

Using the MBean Browser to Add an MBean Attribute

You may know exactly which particular MBean attribute you want to monitor. You can select the
attribute in the and create a for it.MBean Browser JMX Metric Rule

To create a metric from an MBean attribute in the MBean Browser

1. Navigate to the attribute and select it in the MBean Browser.

Copyright © AppDynamics 2012-2014 Page 233

2. Click .Create Metric

3. In the window, select the group in which toSelect JMX Configuration for the Metric Rule
create the rule from the pulldown. The categories that already exist onSelect JMX Configuration
your system are listed. This example uses the Tomcat JMX configuration. Click .OK

Alternatively, you can create a new group with an name of your choosing. Click Create New JMX
 to make a new category. This is useful if you want to separate out the customConfiguration

metrics from the out-of-the-box metrics.

The window opens.Create JMX Metric Rule from an MBean

Copyright © AppDynamics 2012-2014 Page 234

4. Supply the , the category as shown in the Metric Browser where the metrics will beMetric Path
displayed. For more discussion of the Metric Path see Step 5 of the previous section.

5. Review the and modify it as needed. Since this is the MBean youMBean Matching Criteria
selected, you probably do not need to change it.

6. Review the and . This is the MBean attribute you originallyMBean Attribute Metric Name
selected. By default the name is the same as the attribute. You can change it if you want to be
more specific about its use.

7. Review the panel rollup criteria and update as needed. For more information aboutAdvanced
these options see Step 9 of the previous section.

8. Click to define another metric from the same MBean.Add Attribute

9. Click . The new metric displays in the .Create JMX Rule JMX Metric Browser

Copyright © AppDynamics 2012-2014 Page 235

1.

Learn More

Monitor JVMs
Monitor JMX MBeans
Exclude JMX Metrics

Create, Import or Export JMX Metric Configurations

To create a New JMX Configuration
To import a JMX metrics configuration
To export a JMX metrics configuration
To use a pre-3.3 configuration file for JMX metrics

This topic describes how to import or export your existing JMX configurations or create new JMX
configurations.

To create a New JMX Configuration

This is useful if you want to separate out the custom metrics from the out-of-the-box metrics.

In the left navigation menu, click .Servers -> JMX

Prerequisite for Configuring JMX Metric Rules
In order to configure JMX metric rules, your user account must have "Configure
JMX" permissions for the application. For information about configuring user
permissions for applications, see .To Configure the Default Application Permissions

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions

Copyright © AppDynamics 2012-2014 Page 236

1.

2.

3.

4.

Click , in the click the node, and then click . All theSelect Node Node Browser Select
Domains for the node appear.
In the Domain tree, expand the domains to locate the MBean you want to use as the basis
for a JMX metric.

Click the MBean attribute you want to work with, and then click Create New JMX

.Configuration

Copyright © AppDynamics 2012-2014 Page 237

4.

5.

The dialog appears. Create JMX Configuration

 Enter the and for the JMX configuration, and click if you wantName Description Enabled
the new configuration to be immediately accessible and usable.

To import a JMX metrics configuration

1. Click .Configure -> Instrumentation

2. Click the tab.JMX

3. Click the icon.Import JMX Configuration

4. In the JMX Configuration Import screen, click and select the XMLSelect JMX Config. File
configuration file for your JMX metrics.

Copyright © AppDynamics 2012-2014 Page 238

5. Click .Import

To export a JMX metrics configuration

1. Click .Configure -> Instrumentation

2. Click the tab.JMX

3. Click the icon.Export JMX Configuration

The configuration is downloaded as an XML file.

To use a pre-3.3 configuration file for JMX metrics

In AppDynamics Pro Version 3.3 the structure of the XML-based configuration file for JMX metrics
changed. As a result, if you use a pre-3.3 version, you must provide additional attributes in the
configuration file.

The following screenshot shows a sample XML configuration file for the JMX metrics for pre-3.3
versions of AppDynamics:

Copyright © AppDynamics 2012-2014 Page 239

Beginning with AppDynamics version 3.3, the structure for this XML file is the following:

To be able to import your existing configurations for JMX metrics, add the following attributes for
<server> element and of the <metric> elements in your XML file.each

The attributes for each element are listed below:

Attributes for the <server> element

Attribute Name Attribute Type Allowed Values Mandatory/Optional

description String Mandatory

enabled Boolean true/false Mandatory

name String Mandatory

Attributes for each <metric> element

For each <metric> element, add the mandatory attributes from the following list to your existing
configuration file:

Attribute Name Attribute Type Allowed Values Mandatory/Optional

name String Mandatory

domain-name String true/false Mandatory

mbean-name-pattern String Mandatory

Copyright © AppDynamics 2012-2014 Page 240

category String Mandatory
All those <metric>

 elements that
have same value for

 this attribute will
be grouped together
on the metric browser.

enabled Boolean true/false Mandatory

exclude Boolean true/false Mandatory

bean-name String Optional

query-attribute String Optional

query-expression-type Use any one from the
following values:

any-substring
final-substring
equals
initial-substring

Optional

query-value String Optional

instance-identifier String Optional

instance-name String Optional

Exclude JMX Metrics

Tuning What Metrics are Gathered
To exclude a metric

Learn More

This topic describes how to exclude MBean attributes from being monitored as JMX metrics.

For background information about JMX metrics see and .Monitor JVMs Monitor JMX MBeans

Tuning What Metrics are Gathered

AppDynamics provides a default configuration for certain JMX metrics. However, in situations
where an environment has many resources, there may be too many metrics gathered.
AppDynamics lets you exclude resources and particular operations on resources.

To exclude a metric

For example, suppose you want to exclude monitoring for HTTP Thread Pools. Follow the
procedure described in , using the following criteria:Create a new JMX Metrics Rule

1. Set the option to .Exclude Rule Yes

2. Provide the Object Name Match Pattern:

Copyright © AppDynamics 2012-2014 Page 241

Catalina:type=ThreadPool,*

3. Provide the value:Advanced MBean Matching

http

This configuration causes AppDynamics to stop monitoring metrics for HTTP Thread Pools.

Later, if you want to see all HTTP Thread Pool metrics, clear the Enabled checkbox to disable the
rule.

Learn More

Monitor JVMs
Monitor JMX MBeans
Configure JMX Metrics from MBeans

Exclude MBean Attributes
Excluding MBean Attributes from the MBean Browser

To exclude an MBean attribute
Learn More

Excluding MBean Attributes from the MBean Browser

Some MBean attributes contain sensitive information that you do not want the Java Agent to
report. You can configure the Java Agent to exclude these attributes using the <exclude
object-name> setting in the app-agent-config.xml file.

To exclude an MBean attribute

1. Open the AppServerAgent/conf/app-agent-config.xml file.

2. The new configuration takes effect immediately if the agent-overwrite property is set to true in
the app-agent-config.xml. If agent-overwrite is false, which is the default, then the new
configuration will be ignored and you have to restart the agent. Set the property to true.

<property name="agent-overwrite" value="true"/>

3. Locate the JMXService section. It looks like this:

<agent-service name="JMXService" enabled="true">

4. In the JMXService <configuration> section add the <jmx-mbean-browser-excludes> section and
the <exclude object-name> property as per the instructions in the comment.

Copyright © AppDynamics 2012-2014 Page 242

1.
2.
3.
4.
5.

<configuration>
 <!--
 Use the below configuration sample to create rules to
exclude MBean attributes from MBean Browser.
 <exclude object-name=<MBean name pattern>
attributes=< * |comma separated list of attribute names> >
 The example below will exclude all attributes of
MBeans that match "Catalina:*".
 <jmx-mbean-browser-excludes>
 <exclude object-name="Catalina:*"
attributes="*"/>
 </jmx-mbean-browser-excludes>
 -->
 </configuration>

4. Save the file.

Learn More

App Agent for Java Directory Structure
Configure JMX Without Transaction Monitoring

Collect Metrics without Transaction Monitoring
To turn off transaction detection

Learn More

Collect Metrics without Transaction Monitoring

In some circumstances, such as for monitoring caches and message buses, you want to collect
JMX metrics without the overhead of transaction monitoring.

You can do this by turning off transaction detection at the entry point.

To turn off transaction detection

In the left navigation panel, click .Configure -> Instrumentation
In the Select Application or Tier panel, select the application.
In the right panel, click .Use Custom Configuration for this Tier
Expand the list if it is not already expanded.Entry Points
Clear all the relevant Enabled checkboxes in the column.Transaction Monitoring

Transaction monitoring on all selected entry points in the application is disabled. Exit point
detection remains enabled.

Learn More

Configure Business Transaction Detection
Resolve JMX Configuration Issues

Unable to browse MBeans on WebSphere Application Server (WAS).

http://docs.appdynamics.com/display/PRO14S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 243

Unable to get metrics from the App Agent for Java App on a GlassFish server
Unable to get JMX metrics for database connections on GlassFish

Learn More

This topic describes how to resolve issues that may prevent AppDynamics from properly reporting
JMX MBean metrics.

Unable to browse MBeans on WebSphere Application Server (WAS).

In certain situations, you may encounter the following exception in the agent.log file for App Agent
for Java App deployed on the WebSphere Application Server (WAS).

[AD Thread-Transient Event Channel Poller0] 17 Aug 2011 08:14:08,031
ERROR JMXTransientOperationsHandler - Error trying to lookup clz -
java.lang.ClassNotFoundException: com.ibm.ws.security.core.SecurityContext

To resolve this issue:

1. From the WAS administration console, navigate to the JVM settings for the server of interest: A
.pplication servers -> <server> -> Process Definition -> Java Virtual Machine

2. Remove the following setting from the generic JVM settings:

-Djavax.management.builder.initial = -Dcom.sun.management.jmxremote

Unable to get metrics from the App Agent for Java App on a GlassFish server

Under some situations JMX metrics from GlassFish are not reported. Also some metrics may not
be enabled by default. Try these solutions:

1) Confirm that JMX monitoring is enabled in the GlassFish server. Refer to the following
screenshot:

Copyright © AppDynamics 2012-2014 Page 244

2) Copy the text below into an mbean-servers.xml file in the following directory:

<App_Agent_Dir>/conf/jmx/

<?xml version="1.0" encoding="UTF-8" ?>
<!--<!DOCTYPE servers SYSTEM "mbean-servers.dtd"> -->

<servers xmlns="http://www.appdynamics.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.appdynamics.com
mbean-servers.xsd">
 <!--
 <server mbean-server-name="WebSphere"
mbean-name-pattern="WebSphere:*,type=Server,j2eeType=J2EEServer"
version-attribute="platformVersion" version-startsWith="7"
config-file="servers/websphere-7-jmx-config.xml" />

 <server mbean-server-name="WebSphere"
mbean-name-pattern="WebSphere:*,type=Server,j2eeType=J2EEServer"
version-attribute="platformVersion" version-startsWith="6"
config-file="servers/websphere-7-jmx-config.xml" />
 -->
 <server mbean-server-name="WebSphere"
mbean-name-pattern="WebSphere:*,type=Server"
config-file="servers/websphere-7-jmx-config.xml" />
 <server mbean-server-name="JBoss_4"
mbean-name-pattern="jboss.management.local:j2eeType=J2EEServer,name=Local"

Copyright © AppDynamics 2012-2014 Page 245

version-attribute="serverVersion" version-startsWith="4"
config-file="servers/jboss-4-jmx-config.xml" />
 <server mbean-server-name="JBoss_5"
mbean-name-pattern="jboss.management.local:j2eeType=J2EEServer,name=Local"
version-attribute="serverVersion" version-startsWith="5"
config-file="servers/jboss-5-jmx-config.xml" />
 <server mbean-server-name="JBoss_6"
mbean-name-pattern="jboss.management.local:j2eeType=J2EEServer,name=Local"
version-attribute="serverVersion" version-startsWith="6"
config-file="servers/jboss-5-jmx-config.xml" />
 <server mbean-server-name="Tomcat_5.5"
mbean-name-pattern="Catalina:type=Server" version-attribute="serverInfo"
version-startsWith="Apache Tomcat/5.5"
config-file="servers/tomcat-5-jmx-config.xml" />
 <server mbean-server-name="Tomcat_6.0"
mbean-name-pattern="Catalina:type=Server" version-attribute="serverInfo"
version-startsWith="Apache Tomcat/6.0"
config-file="servers/tomcat-6-jmx-config.xml" />
 <server mbean-server-name="Tomcat_7"
mbean-name-pattern="Catalina:type=Server" version-attribute="serverInfo"
version-startsWith="Apache Tomcat/7"
config-file="servers/tomcat-7-jmx-config.xml" />
 <server mbean-server-name="Sun GlassFish_2.1"
mbean-name-pattern="com.sun.appserv:j2eeType=J2EEServer,name=server,category=run
time" config-file="servers/glassfish-v2-jmx-config.xml" />
 <server mbean-server-name="WebLogic_10"
mbean-server-lookup-string="java:comp/jmx/runtime"
mbean-name-pattern="com.bea:*,Type=ServerRuntime"
version-attribute="WeblogicVersion" version-startsWith="WebLogic Server 10"
config-file="servers/weblogic-10-jmx-config.xml" />
 <server mbean-server-name="WebLogic_9"
mbean-server-lookup-string="java:comp/jmx/runtime"
mbean-name-pattern="com.bea:*,Type=ServerRuntime"
version-attribute="WeblogicVersion" version-startsWith="WebLogic Server 9"
config-file="servers/weblogic-9-jmx-config.xml" />
 <server mbean-server-name="ActiveMQ_5.3.2"
mbean-name-pattern="org.apache.activemq:*"
config-file="servers/activemq-5.3.2-jmx-config.xml" />
 <server mbean-server-name="Apache Solr 1.4.1" mbean-name-pattern="solr:*"
config-file="servers\solr-1.4.1-jmx-config.xml" />
 <server mbean-server-name="Apache Cassandra 0.7.0"
mbean-name-pattern="org.apache.cassandra.net:*"
config-file="servers\cassandra-0.7.0-jmx-config.xml" />
 <server mbean-server-name="Apache Cassandra 0.7.0"
mbean-name-pattern="org.apache.cassandra.db:*"
config-file="servers\cassandra-0.7.0-jmx-config.xml" />
 <server mbean-server-name="Apache Cassandra 0.7.0"
mbean-name-pattern="org.apache.cassandra.request:*"
config-file="servers\cassandra-0.7.0-jmx-config.xml" />
 <server mbean-server-name="Apache Cassandra 0.7.0"
mbean-name-pattern="org.apache.cassandra.internal:*"
config-file="servers\cassandra-0.7.0-jmx-config.xml" />
 <!-- If you are using Platform MBean server to report activemq metrics then
you may uncomment the following line.
 -->
 <!--

Copyright © AppDynamics 2012-2014 Page 246

 <server mbean-server-name="Platform"
mbean-name-pattern="org.apache.activemq:*"
config-file="servers\activemq-5.3.2-jmx-config.xml" />
 -->

 <!-- If your app publishes custom jmx metrics to platform jmx server then
you may modify the platform-jmx-config.xml
 and update the mbean-name-pattern in the following line to start recording
your metrics by appdynamics agent
 -->

 <!--
 <server mbean-server-name="Platform" mbean-name-pattern="com.foo.myjmx:*"
config-file="servers\platform-jmx-config.xml" />
 -->

Copyright © AppDynamics 2012-2014 Page 247

</servers>

You should see a new JMX node in the metrics tree.

Unable to get JMX metrics for database connections on GlassFish

JDBC connection pool metrics are not configured out-of-the-box for GlassFish. To configure them,
uncomment the JDBC connection pool section and provide the relevant information in the following
file:

<app_agent_install>/conf/jmx/servers/glassfish-v2-jmx-config.xml

Uncomment the following section and follow the instructions provided in the file.

Copyright © AppDynamics 2012-2014 Page 248

<!-- The following config can be uncommented to monitor glassfish JDBC
connection pool. Please set the name of the connection
pool (not the datasource name) and enable monitoring for the JDBC Pools on
glassfish admin console. -->
<!--
<metric
mbean-name-pattern="com.sun.appserv:type=jdbc-connection-pool,category=monitor,n
ame=<set the name of pool>,*"
category="JDBC Connection Pools">
<attribute-counter-mappings>
<attribute-counter-mapping>
<attribute-name>numconnused-current</attribute-name>
<counter-name>Connections In Use</counter-name>
<counter-type>average</counter-type>
<time-rollup-type>average</time-rollup-type>
<cluster-rollup-type>individual</cluster-rollup-type>
</attribute-counter-mapping>
<attribute-counter-mapping>
<attribute-name>numconnused-highwatermark</attribute-name>
<counter-name>Max Connections Used</counter-name>
<counter-type>observation</counter-type>
<time-rollup-type>average</time-rollup-type>
<cluster-rollup-type>individual</cluster-rollup-type>
</attribute-counter-mapping>
<attribute-counter-mapping>
<attribute-name>numpotentialconnleak-count</attribute-name>
<counter-name>Potential Leaks</counter-name>
<counter-type>observation</counter-type>
<time-rollup-type>average</time-rollup-type>
<cluster-rollup-type>individual</cluster-rollup-type>
</attribute-counter-mapping>
<attribute-counter-mapping>
<attribute-name>averageconnwaittime-count</attribute-name>
<counter-name>Avg Wait Time Millis</counter-name>
<counter-type>observation</counter-type>
<time-rollup-type>average</time-rollup-type>
<cluster-rollup-type>individual</cluster-rollup-type>
</attribute-counter-mapping>
<attribute-counter-mapping>
<attribute-name>waitqueuelength-count</attribute-name>
<counter-name>Current Wait Queue Length</counter-name>
<counter-type>observation</counter-type>
<time-rollup-type>average</time-rollup-type>
<cluster-rollup-type>individual</cluster-rollup-type>
</attribute-counter-mapping>
</attribute-counter-mappings>
</metric>

Learn More

IBM WebSphere and InfoSphere Startup Settings
GlassFish Startup Settings

Copyright © AppDynamics 2012-2014 Page 249

MBean Getter Chains and Support for Boolean and String Attributes

Example Metric Getter Chain

1. Given the following MBean code:

2. Locate the MBean in the MBean Browser:

In addition to getter chain support for numeric boxed primitives (Short, Integer, Long, etc.),
Strings and Booleans are supported using implicit conversion. Expressions can be
executed against any value.

Prior to 3.7.7, AppDynamics supported Integer MBean attributes. In 3.7.7 support was
added for Boolean and String attributes using the new getter chain field that implicitly
converts the Boolean or String to an Integer. Booleans are automatically converted to 0
(false) and 1 (true). Strings are converted to numeric values.

Copyright © AppDynamics 2012-2014 Page 250

3. Create a new JMX Metric Rule and add the getter chain information in new Metric Getter Chain
field:

Copyright © AppDynamics 2012-2014 Page 251

4. The new metric shows up in the Metric Tree:

Copyright © AppDynamics 2012-2014 Page 252

Learn More

Getter Chains in Java Configurations

Percentile Metrics

Demo of Percentile Metrics

Percentile metrics are available for business transaction response time. Percentiles are generally
a better indicator than averages because they are not sensitive to outliers while averages can get
distorted. Percentile metrics can provide a sense of how the response times are distributed. From
this information you can extrapolate the percentage of responses that are within and outside of
acceptable ranges.

Percentiles describe distributions of real world data sets in ways that are less sensitive to the
effect of outliers in the data set than simpler calculations such as the mean. Percentile metrics can
provide you with answers to questions such as the following:

What is the 95th percentile latency of transactions for a single web server?
What is the 95th percentile latency of transactions for the entire web site (over all the
servers)?
What is the 95th percentile latency of transactions for the website during the last one hour?

Percentile metrics for business transaction response time are displayed in the Metric Browser or
Custom Dashboard.

Copyright © AppDynamics 2012-2014 Page 253

Percentile metrics can be interpreted as follows: the 95th percentile point indicates that 95% of all
response times were less than the metric value. It provides a sense of how the response times are
distributed. For example if the metric Observed (Average) or percentile value is 300ms, it implies
that 95% of the business transaction response times are less than 300ms, and therefore implies
that 95% of the business transaction response times are within acceptable ranges. It also implies
that 5% of the requests have been taking more time and could be a cause for concern.

Enabling Percentile Metrics

There are three agent node properties that you can use to enable and configure how percentile
metrics are collected. You do not need to restart the agent after making changes to these
properties.

disable-percentile-metrics: Set this property to 'false' to view the percentile metrics.

percentile-method-option You can choose one of two different algorithms to calculate
percentiles in AppDynamics:

P Square algorithm (default): This option consumes the least amount of storage and
incurs the least amount of CPU overhead. The accuracy of the percentile calculated
varies depending on the nature of the distribution of the response times. You should
use this option unless you doubt the accuracy of the percentiles presented.
Quantile Digest algorithm: This option consumes slightly more storage and CPU
overhead for the machine where the agent is running, but may offer better percentiles
depending on how the response times are distributed.

percentiles-to-report: By default, the system will capture the 95th percentile metrics. You can
change the percentile captured here.

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-disable-percentile-metrics
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-percentile-method-option
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-percentiles-to-report

Copyright © AppDynamics 2012-2014 Page 254

Learn More

Metric Browser
Business Metrics
App Agent Node Properties Reference
App Agent Node Properties

Monitor Java Applications

Monitor JVMs

Infrastructure Monitoring in a Java Environment
JVM Key Performance Indicators

Memory Usage and Garbage Collection
To view heap usage, garbage collection, and memory pools
Heap Usage
Garbage Collection
Memory Pools

Classes, Garbage Collection, Memory, Threads, and Process CPU Usage Metrics
To view classes, garbage collection, memory, threads, and process CPU usage
metrics

Alert for JVM Health
Monitor JVM Configuration Changes
Detect Memory Leaks

Automatic Leak Detection
To enable automatic leak detection

Detect Memory Thrash
Object Instance Tracking

To monitor Java object instances
Monitor Long-lived Collections

To view or configure custom memory structures
Learn More

Infrastructure Monitoring in a Java Environment

A Java application environment has multiple functional subsystems. These are usually
instrumented using JMX (Java Management Extensions) or IBM Performance Monitoring
Infrastructure (PMI). AppDynamics automatically discovers JMX and PMI attributes.

JMX uses objects called MBeans (Managed Beans) to expose data and resources from your
application. In a typical application environment, there are three main layers that use JMX:

JVMs provide built-in JMX instrumentation, or platform-level MBeans that supply important
metrics about the JVM.
Application servers provide server or container-level MBeans that reveal metrics about the

JVM/container configuration can often be a root cause for slow performance because not
enough resources are available to the application.

http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Business+Metrics
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties

Copyright © AppDynamics 2012-2014 Page 255

1.

server.
Applications often define custom MBeans that monitor application-level activity.

MBeans are typically grouped into domains to indicate where resources belong. Usually in a JVM
there are multiple domains. For example, for an application running on Apache Tomcat there are
“Catalina” and “Java.lang” domains. “Catalina” represents resources and MBeans relating to the
Tomcat container, and “Java.lang” represents the same for the JVM Hotspot runtime. The
application may have its own custom domains.

For more information about JMX, see the . To learn about PMI see JMX overview and tutorial Writi
.ng PMI Applications Using the JMX Interface

JVM Key Performance Indicators

There are often thousands of attributes, however, you may not need to know about all of them. By
default, AppDynamics monitors the attributes that most clearly represent key performance
indicators and provide useful information about short and long term trends. The preconfigured JVM
metrics include:

Total classes loaded and how many are currently loaded
Thread usage
Percent CPU process usage
On a per-node basis:

Heap usage
Garbage collection
Memory pools and caching
Java object instances

You can configure additional monitoring for:

Automatic leak detection
Custom memory structures

Memory Usage and Garbage Collection

Monitoring garbage collection and memory usage can help you identify memory leaks or memory
thrash that can have a negative impact application performance.

To view heap usage, garbage collection, and memory pools

In the left navigation pane, click . The NodeServers - > App Servers -> <tier> -> <node>

Important Information
The agent cannot capture memory statistics if the application is configured to use G1GC
(-XX:+UseG1GC) and using JDK version = 1.6.0_26-b03. You should either remove
-XX:+UseG1GC from the application startup options or upgrade the JDK to version 1.6.0_3
2 or higher.

http://download.oracle.com/javase/tutorial/jmx/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html

Copyright © AppDynamics 2012-2014 Page 256

1.

2.
3.

Dashboard opens.
On the Node Dashboard, click the Memory tab.
On the Memory tab, click the Heap & Garbage Collection subtab. The panels show data
about the current usage.

See for a complete description of the this dashboard.Node Dashboard

Heap Usage

The Heap panel shows data about the current usage.

Garbage Collection

Java garbage collection refers to how the JVM monitors the objects in memory to find any objects
which are no longer being referenced by the running application. Unused objects are deleted from
memory to make room for new objects. For details see the Java documentation for Tuning

.Garbage Collection

Garbage collection is a well-known mechanism provided by Java Virtual Machine to reclaim heap
space from objects that are eligible for garbage collection. The process of scanning and deleting
objects can cause pauses in the application. Because this can be an issue for applications with
large amounts of data, multiple threads, and high transaction rates, AppDynamics captures
performance data about the duration of the pauses for garbage collection.

Below the Heap panel, the Garbage Collection - Time Spent panel shows how much time, in
milliseconds, it takes to complete both minor and major collections.

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html

Copyright © AppDynamics 2012-2014 Page 257

The Garbage Collection - Minor Collections panel shows the number of minor collections per
minute. The effectiveness of minor collections indicates better performance for your application.

The Garbage Collection - Major Collections panel shows the number of major collections per
minute.

Memory Pools

The Memory Pools panel shows usage and trends about the Java memory pools.

Classes, Garbage Collection, Memory, Threads, and Process CPU Usage Metrics

Information on JVM classes, garbage, threads and process CPU usage is available on the JMX
Metrics subtab of the Node Dashboard JMX tab.

To view classes, garbage collection, memory, threads, and process CPU usage metrics

1. In the left navigation pane, click . The NodeServers - > App Servers -> <tier> -> <node>
Dashboard opens.

2. In the Node Dashboard, click the JMX tab.

Copyright © AppDynamics 2012-2014 Page 258

3. In the JMX Metrics subtab metric tree, click an item and drag it to the line graph to plot current
metric data.

Alert for JVM Health

You can set up health rules based on JVM or JMX metrics. Once you have a health rule, you can
create specific based on health rule violations. One type of response to a health rulepolicies
violation is an alert. See for a discussion of how health rules, alerts, andAlert and Respond
policies can be used.

You can also create additional persistent JMX metrics from MBean attributes. See Configure JMX
.Metrics from MBeans

Monitor JVM Configuration Changes

The JVM tab of the Node Dashboard displays the JVM version, startup options, system options
and environment properties for the node.

http://docs.appdynamics.com/display/PRO14S/Policies
http://docs.appdynamics.com/display/PRO14S/Alert+and+Respond

Copyright © AppDynamics 2012-2014 Page 259

Changes to the application configuration generate events that can be viewed in the Events list.

For more information, see .Monitor Application Change Events

Detect Memory Leaks

By monitoring JVM heap utilization and memory pool usage you can identify potential memory
leaks. Consistently increasing heap valleys may indicate either an improper heap configuration or
a memory leak. You might identify potential memory leaks by analyzing the usage pattern of either
the survivor space or the old generation. To troubleshoot memory leaks see Troubleshoot Java

.Memory Leaks

Automatic Leak Detection

AppDynamics supports automatic leak detection for some JVMs as listed in . ByJVM Support
default this functionality is not enabled, because using this mode results in higher overhead on the
JVM. AppDynamics recommends that you enable leak detection mode only when you suspect a
memory leak problem and that you turn it off once the leak is identified and remedied.

Memory leaks occur when an unused object’s references are never freed. These are the most
common occurrences in collections classes, such as HashMap. This is caused when an
application code puts objects in collections but does not remove them even when they are not
being actively used. In production environments with high workloads, a frequently
accessed collection with a memory leak can cause the application to crash.

AppDynamics automatically tracks every Java collection (HashMap, ArrayList, and so on) that has
been alive in the heap for more than 30 minutes. The collection size is tracked and a linear
regression model identifies if the collection is potentially leaking. You can then identify the root

http://docs.appdynamics.com/display/PRO14S/Monitor+Application+Change+Events
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-JVMSupport

Copyright © AppDynamics 2012-2014 Page 260

1.

2.

cause of the leak by tracking frequent accesses of the collection over a period of time.

View this data on the Node Dashboard on the Automatic Leak Detection subtab of the Memory
tab. See for a complete description of this dashboard and its tabs.Node Dashboard

To enable automatic leak detection

To enable automatic leak detection follow the instructions at .Troubleshoot Java Memory Leaks

Detect Memory Thrash

Memory thrash is caused when a large number of temporary objects are created in very short
intervals. Although these objects are temporary and are eventually cleaned up, the
garbage collection mechanism may struggle to keep up with the rate of object creation. This may
cause application performance problems. Monitoring the time spent in garbage collection can
provide insight into performance issues, including memory thrash. For example, an increase in the
number of spikes for major collections either slows down a JVM or indicates potential memory
thrash. To troubleshoot memory thrash, see .Troubleshoot Java Memory Thrash

Object Instance Tracking

The Object Instance Tracking subtab helps you isolate the root cause of possible memory thrash.
By default,AppDynamics tracks the object instances for the top 20 core Java classes and the top
20 application classes. For the list of the supported JVMs see the Compatibility Matrix for Memory

.Monitoring

The Object Instance Tracking subtab provides the number of instances for a particular class and
graphs the count trend of those object in the JVM. It provides the shallow memory size (the
memory footprint of the object and the primitives it contains) used by all the instances.

To monitor Java object instances

Ensure the tools.jar file is in the jre/lib/ext directory.

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedEnvironmentsAndVersions-CompatibilityMatrixforMemoryMonitoring
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions#SupportedEnvironmentsandVersions-SupportedEnvironmentsAndVersions-CompatibilityMatrixforMemoryMonitoring

Copyright © AppDynamics 2012-2014 Page 261

2.
3.
4.

On the Node Dashboard, click the Memory tab.
On the Memory tab, click the Object Instance Tracking subtab.
Click and then .On OK

See .Configure Object Instance Tracking (Java)

Monitor Long-lived Collections

AppDynamics automatically tracks long lived Java collections (HashMap, ArrayList, and so on)
with Automatic Leak Detection. You can also configure tracking of specific classes using the
Custom Memory Structures capability. You can use this capability to monitor a custom cache or
other structure that is not a Java collection. Custom memory structures are used as caching
solutions. For example, you may have a custom cache or a third party cache such as Ehcache. In
a distributed environment, caching can easily become a prime source of memory leaks. In
addition, custom memory structures may or may not contain collections objects that would be
tracked using automatic leak detection. It is therefore important to manage and track these
memory structures.

AppDynamics provides visibility into:

Cache access for slow, very slow, and stalled business transactions
Usage statistics (rolled up to Business Transaction level)
Keys being accessed
Deep size of internal cache structures

Ensure your custom memory structures are supported on your JVM, see .JVM Support

To view or configure custom memory structures

1. In the Node Dashboard, click the Memory tab.

3. On the Memory tab, click the Custom Memory Structures subtab.

For details see .Configure and Use Custom Memory Structures for Java

Learn More

Configure Policies
Supported Environments and Versions
Infrastructure Metrics
Monitor Events

JVM Crash Guard

To start monitoring for JVM Crashes

When a JVM crash occurs,you need to be notified as soon as possible. Learning of a JVM crash
is very critical because it maybe a sign of a severe runtime problem in an application.
 Furthermore, you may want to to take remediation steps once you are aware that a crash event
has occurred. JVM Crash is a new event type, implemented as part of JVM Crash Guard, that you
can activate to provide you with the information you need to expeditiously handle JVMcritical
crashes.

The following image shows the Events window where notification of two JVM Crash events

http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions+for+Java#SupportedEnvironmentsandVersionsforJava-JVMSupport
http://docs.appdynamics.com/display/PRO14S/Configure+Policies
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
http://docs.appdynamics.com/display/PRO14S/Infrastructure+Metrics
http://docs.appdynamics.com/display/PRO14S/Monitor+Events

Copyright © AppDynamics 2012-2014 Page 262

detected is displayed.

Double-clicking the JVM Crash event on the Events window displays more information to assist
you in troubleshooting the underlying reason for the JVM crash.

On the Summary page you can download any logs associated with the JVM Crash event.

Copyright © AppDynamics 2012-2014 Page 263

1.

The JVM Crash window also displays information about actions executed as a result of the crash.
These are actions that you specify when creating the policy that is triggered by a JVM crash event.

The JVM Crash event captures the following information: timestamp, crash reason, host name, IP
address, process ID, application name, node name, and tier name and displays them on the
details page.

In the Crash Reason details field of the JVM Crash Details tab, the JVM Crash details indicate the
root cause of the crash if available; for example, a java.lang.OutOfMemoryError, Segmentation
Fault, etc... To facilitate the discovery and display of the reason for the JVM crash, JVM Crash
Guard provides full support for:

Hotspot JVM error log analysis
IBM JVM System Dump log analysis
Jrockit JVM error log analysis

To start monitoring for JVM Crashes

From the left-hand navigation menu, click -> and then click Alert & Respond Policies Creat
.e a Policy

OR

Prerequisite
JVM Crash Guard is a policy trigger that works with the Standalone Machine Agent to fire
an AppDynamics policy when a JVM Crash event occurs. You must therefore have a
Standalone Machine Agent installed on the system which you want to monitor for JVM
crashes. On Windows, the Standalone Machine Agent must run in Administrator mode.

Copyright © AppDynamics 2012-2014 Page 264

1.

2.

3.

Navigate to the tab and then click .Policies Create a Policy
The dialog appears.Create Policy

In the section, expand the option and click . Other Events Server Crashes JVM Crash
The JVM Crash event then becomes a trigger to fire a policy.
Proceed as usual to create the Policy. For more information on creating Policies, see Policie
. s

http://docs.appdynamics.com/display/PRO13S/Policies
http://docs.appdynamics.com/display/PRO13S/Policies

Copyright © AppDynamics 2012-2014 Page 265

3.

Monitor Java App Servers
Infrastructure Monitoring in a Java Environment
App Server Key Performance Indicators
Alerting for App Server Health
Learn More

Utilizing JMX Metrics in
Troubleshooting

https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html

Copyright © AppDynamics 2012-2014 Page 266

Infrastructure Monitoring in a Java Environment

A Java application environment has multiple functional subsystems. These are usually
instrumented using JMX (Java Management Extensions) or IBM Performance Monitoring
Infrastructure (PMI). AppDynamics automatically discovers JMX and PMI attributes.

JMX uses objects called MBeans (Managed Beans) to expose data and resources from your
application. In a typical application environment, there are three main layers that use JMX:

JVMs provide built-in JMX instrumentation, or platform-level MBeans that supply important
metrics about the JVM.
Application servers provide server or container-level MBeans that reveal metrics about the
server.
Applications often define custom MBeans that monitor application-level activity.

MBeans are typically grouped into domains to indicate where resources belong. Usually in a JVM
there are multiple domains. For example, for an application running on Apache Tomcat there are
“Catalina” and “Java.lang” domains. “Catalina” represents resources and MBeans relating to the
Tomcat container, and “Java.lang” represents the same for the JVM Hotspot runtime. The
application may have its own custom domains.

For more information about JMX, see the . To learn about PMI see JMX overview and tutorial Writi
.ng PMI Applications Using the JMX Interface

App Server Key Performance Indicators

AppDynamics creates long-term metrics of the key MBean attributes that represent the health of
the Java container. Depending on your application configuration, metrics may include:

Session information such as the number of active and expired sessions, maximum active
sessions, processing time, average and maximum alive times, and a session counter.

Web container runtime metrics that represent the thread pool that services user requests.
The metrics include pending requests and number of current threads servicing requests.
These metrics are related to Business Transaction metrics such as response time.

Messaging metrics related to JMS destinations, including the number of current consumers
and the number of current messages.

JDBC connection pool metrics including current pool size and maximum pool size.

To see the JMX metrics discovered in a node, see the JMX tab on the Node Dashboard.

To learn how to customize additional MBean attributes for long-term monitoring, see Configure
.JMX Metrics from MBeans

Alerting for App Server Health

AppDynamics discovers metrics for most Java platforms and applications. Some environments
however are not instrumented by default, yet they have MBeans. For those situations you can
enable monitoring using the MBean Browser. For details see .Monitor JMX MBeans

In addition to the preconfigured metrics, you may be interested in additional JVM or Java container
metrics. You can add custom metrics using JMX MBean attributes in the Metric Browser. To

http://download.oracle.com/javase/tutorial/jmx/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html

Copyright © AppDynamics 2012-2014 Page 267

customize which MBean attributes are monitored, see .Configure JMX Metrics from MBeans

Once you add a custom metric you can create a custom health rule for it and receive alerts if
conditions indicate problems. For details see .Alert and Respond

AppDynamics also provides the Application Server Agent API (Agent API) for access to metrics
that are not supported by default or by MBeans. You can use the Agent API to:

Inject custom events and report on them
Create and report on new metrics
Correlate distributed transactions when using protocols that AppDynamics does not support

Learn More

Configure JMX Metrics from MBeans
Monitor JMX MBeans
Configure Health Rules
Supported Environments and Versions

Monitor JMX MBeans
JMX and MBeans Monitoring Application
Infrastructure

Prerequisites for JMX Monitoring
Preconfigured JMX Metrics

To view the configuration of the
preconfigured JMX metrics

Using AppDynamics for JMX Monitoring
To view JMX metrics in the Metrics
Browser

Trending MBeans Using Live Graphs
To monitor the real-time trend of an
MBean

Working with MBean Values
To View and Edit the MBean Attribute
Values
To invoke MBean Operations
To view Complex MBean Attributes

Configuring New JMX Metrics
Reusing JMX Metric Configurations

Understanding JMX Metrics
Learn More

http://docs.appdynamics.com/display/PRO14S/Alert+and+Respond
http://docs.appdynamics.com/display/PRO14S/Configure+Health+Rules
http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html

Copyright © AppDynamics 2012-2014 Page 268

Utilizing JMX Metrics in
Troubleshooting

This topic discusses how to provide visibility into the JMX metrics for your JVM and application
server.

JMX and MBeans Monitoring Application Infrastructure

As discussed at and , AppDynamics uses JMX (JavaMonitor JVMs Monitor Java App Servers
Management Extensions) to monitor Java applications.

JMX uses objects called MBeans (Managed Beans) to expose data and resources from your
application. You can use one or more MBean attributes to create persistent JMX metrics in
AppDynamics. In addition, you can import and export JMX metric configurations from one version
or instance of AppDynamics to another.

Prerequisites for JMX Monitoring

AppDynamics can capture MBean data, when these conditions are met:

The monitored system must be running on Java 1.5 or later.
Each monitored Java process must enable JMX. See .the JMX documentation

https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
https://education.appdynamics.com/video/UtilizingJMXMetricsInTroubleshooting/story.html
http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

Copyright © AppDynamics 2012-2014 Page 269

1.
2.

3.

Additional MBean data may be available when a monitored business application exposes
Managed Beans (MBeans) using standard JMX. See .the MBean documentation

Preconfigured JMX Metrics

AppDynamics provides preconfigured JMX metrics for several common app server environments:

Apache ActiveMQ
Cassandra
Coherence
GlassFish
HornetQ
JBoss
Apache Solr
Apache Tomcat
Oracle WebLogic Server
WebSphere PMI

For application server environments that are not instrumented by default, you can configure new
JMX metrics configurations. You can also add new JMX metric rules. See Configure JMX Metrics

. You can also add new metric rules to the existing set of configurations. Forfrom MBeans
example, Glassfish JDBC connection pools can be manually configured using MBean attributes
and custom JMX metrics.

To view the configuration of the preconfigured JMX metrics

In the left navigation pane, click and select the tab. Configure -> Instrumentation JMX
The list of appears.JMX Metric Configurations
Click a metric configuration to view the preconfigured JMX metrics for that app server.
For example, selecting Cassandra shows the preconfigured JMX Metric Rules for Apache
Cassandra.
Double-click a metric rule to see configuration details such as the MBeans matching criteria
and the MBean attributes being used to define the metric.

http://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

Copyright © AppDynamics 2012-2014 Page 270

3.

1.

2.

3.
4.

5.

1.

2.

3.

You can view, delete, and edit the existing JMX metric rules.

Using AppDynamics for JMX Monitoring

You can view MBean-based metrics using the Node Dashboard and the Metric Browser. In
addition, the MBean Browser enables you to view all the MBeans defined in the system.

To view JMX metrics in the Metrics Browser

In the left navigation pane, click . The NodeServers -> App Servers -> < > -> < >Tier Node
Dashboard opens.
Click the tab. The JMX Metrics browser opens and displays the MBeans in a MetricJMX
Tree.
To monitor a particular metric, double-click or drag and drop the metric onto the graph panel.
Browse the default JMX metrics.

You can perform all the operations that are provided by the Metric Browser such as:

Drill-down
Analyze the transaction snapshot for a selected time duration
Set the selected time range as a global time range

Trending MBeans Using Live Graphs

You can monitor the trend of a particular MBean attribute over time using the .Live Graph

To monitor the real-time trend of an MBean

In the left navigation pane, click . The NodeServers -> App Servers -> <Tier> -> <Node>
Dashboard opens.
Click the tab. JMX

Copyright © AppDynamics 2012-2014 Page 271

3.

4.

5.

6.
7.

8.

Click the sub-tab.MBean Browser

Select the domain for which you want to monitor MBeans. For a description of domains see
. Monitor JVMs

In the domain tree, expand the domains to find and then select the MBean that is of interest
to you.
Expand the section and then choose an attribute of the MBean.Attributes
Click and then click . You can see theStart Live Graph for Attribute Start Live Graph
runtime values.
Select an attribute and click to see a larger view of a particularLive Graph for Attribute
graph.

Alternate Path to JMX Metrics
Alternatively, in the left navigation pane, click . TheServers -> App Servers -> JMX
JMX window appears
If you haven't already selected a node, you are prompted to select a node and then a
tier and then the JMX window appears

Copyright © AppDynamics 2012-2014 Page 272

8.

1.
2.
3.

4.

Working with MBean Values

When troubleshooting or monitoring a Java-based system, you may want to change the values of
composite mBeans and execute mBean methods. Using the JMX window, you can accomplish
these tasks.

To View and Edit the MBean Attribute Values

From the window, select .JMX MBean Browser
In the Domain tree, search and find the MBean that interests you.
Select an editable attribute, one that has in the column, and then click Yes Editable View/E

.dit Attribute
In the window that displays, you see the current value of the MBeanMBean Attribute
Attribute.

Prerequisite for Setting MBean Attributes and Invoking Operations
To change the value of an MBean attribute or invoke operation, your user account
must have "Set JMX MBean Attributes and Invoke Operations" permissions for the
application. For information about configuring user permissions for applications, see

.To Configure the Default Application Permissions

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions

Copyright © AppDynamics 2012-2014 Page 273

4.

5.

1.
2.
3.

4.

You can change the value of an editable MBean Attribute by entering a new value in the Val
field.ue

To invoke MBean Operations

Using the JMX viewer, you can invoke an mBean operation, specify standard java language
strings for the parameters, and view the return values from the mBean invocation.

From the window, select .JMX MBean Browser
In the Domain tree, search and find the MBean that interests you.
Open the pane, scroll to find the operation that interests you, and double-clickOperations
the activator.Invoke Action

Copyright © AppDynamics 2012-2014 Page 274

4. Enter the parameter values for the operation and then click . Click to invoke theInvoke OK
operation.
Scalar values for constructors of complex types, such as getMBeanInfo(java.util.Locale)
allow you to enter "en-us".
A message appears indicating that the operation is in progress and the number of seconds
elapsed. When the operation completes, the results display.
The method return result from an invocation can also be a complex attribute. In this case
the name, description, type, and editable attributes of the method are also displace in the
MBean Operation Result area.

To view Complex MBean Attributes

When the MBean is a complex type, you can view its details by double-clicking it as shown below.

Copyright © AppDynamics 2012-2014 Page 275

Configuring New JMX Metrics

In addition to the preconfigured metrics, you can define a new persistent metric using a JMX
Metric Rule that maps a set of attributes from one or more MBeans.

You can create a JMX metric from any MBean attribute or set of attributes. Once you create a
persistent JMX metric, you can:

View it in the Metric Browser
Add it to a Custom Dashboard
Create a health rule for it so that you can receive alerts

The JMX Metrics Configuration panel is the central configuration interface for all of the JMX
metrics that AppDynamics reports. You can use the MBean Browser to view MBeans exposed in
your environment. From there, you can access the JMX Metrics Configuration panel by selecting
an MBean attribute and clicking .Create Metric

For details, see .Configure JMX Metrics from MBeans

Reusing JMX Metric Configurations

Once you create a custom JMX metric configuration, you can keep the configuration for upgrade
or other purposes. The JMX metric information is stored in an XML file that you can export and
then import to another AppDynamics system. For instructions see Create, Import or Export JMX

.Metric Configurations

Required User Permissions
To configure new JMX Metrics your user account must have "Configure JMX" permis

for the application.sions
For information about configuring user permissions for applications, see To

.Configure the Default Application Permissions

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions

Copyright © AppDynamics 2012-2014 Page 276

Understanding JMX Metrics

Java Management Extensions (JMX) is a public specification for monitoring and managing Java
applications. Through JMX, Appdynamics can access Java class properties that collect
management data, such as the resources your application is consuming.

For information on the specific metrics available for you environment, see the documentation
provided by your vendor.

Apache ActiveMQ, see ActiveMQ MBeans Reference, in the ActiveMQ Features
documentation
Cassandra, see Cassandra Metrics
Coherence, see the Coherence MBeans Reference in Appendix A of the Coherence
Management Guide
GlassFish, see the Oracle Sun Glassfish Administration Guide where you can find a Metrics
Information Reference
HornetQ, see Using Management Via JMX
JBoss, see An Introduction to JMX
Apache Solr, see in the Solr JMX documentationQuick Demo
Apache Tomcat, see the descriptions of in theJMX MBeans for Catalina
mbeans-descriptor.xml file for each package
Oracle WebLogic Server, see Understanding JMX
WebSphere PMI, see in the IBM Websphere ApplicationPMI data organization
documentation

Learn More

Configure JMX Metrics from MBeans
Monitor JVMs
Create, Import or Export JMX Metric Configurations
Configure JMX Without Transaction Monitoring

Trace MultiThreaded Transactions for Java

Thread Visibility and Metrics
Thread Metrics
Asynchronous Activity in Dashboards

Application Dashboard
Business Transaction Dashboard

Threads and Thread Tasks in the Metric Browser
Threads in Call Graphs

To Drill Down into Downstream Calls on a Thread
Thread Metrics in Health Rules
Learn More

Multithreaded programming techniques are common in applications that require asynchronous
processing. Although each thread has its own call stack, multiple threads can access shared data.
This creates two potential problems: visibility and access.

A visibility problem occurs if thread A reads shared data which is later changed by thread B,
and thread A is not aware of the change.
An access problem occurs if several threads are trying to access and change the same

http://activemq.apache.org/jmx.html
http://activemq.apache.org/jmx.html
http://wiki.apache.org/cassandra/Metrics
http://docs.oracle.com/cd/E24290_01/coh.371/e22842/toc.htm
http://docs.oracle.com/cd/E24290_01/coh.371/e22842/toc.htm
http://docs.oracle.com/cd/E19575-01/821-0027/aeoor/index.html
http://docs.oracle.com/cd/E19575-01/821-0027/aeoor/index.html
http://docs.jboss.org/hornetq/2.2.14.Final/user-manual/en/html/management.html
https://community.jboss.org/wiki/AnIntroductionToJMX
http://wiki.apache.org/solr/SolrJmx
http://tomcat.apache.org/tomcat-6.0-doc/mbeans-descriptor-howto.html
http://docs.oracle.com/cd/E14571_01/web.1111/e13729/understanding.htm
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.base.doc/ae/rprf_dataorg.html

Copyright © AppDynamics 2012-2014 Page 277

shared data at the same time.

Visibility and access problems can lead to:

Liveness failure: Application performance becomes sluggish or stops processing also known
as a deadlock.
Safety failure: Race condition that results in difficult to discover programming errors.

Thread contention can occur when multiple threads attempt to access a synchronized method or
block at the same time. If a thread remains in the synchronized method or blocks for a long time,
the other threads must wait for access to shared resources. This situation has an adverse effect
on application performance. Call graphs for multi-threaded transactions enable you to trace thread
creation in a business transaction and provide an aggregated view of the overall processing for
transactions that spawn threads for concurrent processing.

AppDynamics monitors asysnchronous activities as first class entities with their own metrics to
give you the information you need to see and act to correct these performance issues.

Thread Visibility and Metrics

When applications spawn threads to perform concurrent tasks, you can monitor each thread as a
separate entity, including exit calls and policies associated with a specific thread. By default,
all Runnables, Callables and Threads are instrumented, except those that are explicitly excluded.

AppDynamics provides the flexibility to adjust the default monitoring to match the needs of your
specific applications. In some environments, if the default settings lead to too many classes being
instrumented, you can create custom rules to exclude unnecessary classes. If you do not want to
monitor any threads, you can completely disable asynchronous monitoring. This requires an agent
restart. See .Configure Multi-Threaded Transactions for Java

AppDynamics provides thread visibility in dashboards, the metric browser and snapshots.

Thread Metrics

For each asynchronous thread spawned in the course of executing a business transaction,
AppDynamics collects and reports metrics such as the following:

Average response time
Calls per minute
Errors per minute

Asynchronous Activity in Dashboards

AppDynamics detects asynchronous calls in an application and labels them as "async" in the
dashboards that display the asynchronous activity.

Application Dashboard

In the following Application Flow Map, you can see the calls per minute and average response
time displayed on each flow line where asynchronous activities are detected. These metrics
aggregate the metrics for asynchronous activities across all business transactions.

Copyright © AppDynamics 2012-2014 Page 278

For improved visibility, you can set the flow map lines to display as dotted lines. See To enable
.dotted flow line

Business Transaction Dashboard

Asynchronous activity can be viewed in a hierarchical format with the originating activities
encapsulating their respective spawned asynchronous activities. The tree view of a multi-threaded
business transaction flow shows the hierarchical view as well as the errors and time spent in
asynchronous calls for separate business transactions. To expand the tree to see all the calls,
right-click a tier name and select Expand All.

The following metrics are visualized in the Transaction Flow Tree View:

Metric Name Explanation

http://docs.appdynamics.com/display/PRO14S/Flow+Maps#FlowMaps-async-dotted-line
http://docs.appdynamics.com/display/PRO14S/Flow+Maps#FlowMaps-async-dotted-line

Copyright © AppDynamics 2012-2014 Page 279

Time Spent (ms) Average time spent by the specific activity and
any spawned asynchronous activities.
Percentage metrics are used to represent the
fraction of time spent in a specific activity.
Asynchronous activities do not have a
percentage breakdown because each
asynchronous activity is linked to the
originating business transaction, but
represents a separate logical entity throughout
the execution of the business transaction.

Calls Number of calls made by a particular activity
such as an asynchronous activity.

Calls/min Number of calls made per minute for a
particular activity such as an asynchronous
thread.

Errors Number of calls for a particular activity which
resulted in errors.

Errors/min Number of calls made per minute for a
particular activity which resulted in errors.

Trends for baselines are visualized using the data for the originating business transaction. Metrics
for the asynchronous activities are not used in calculation of these trends.

The Transaction Scorecard reflects only the data for the originating business transaction. The
scorecard metrics are not inclusive of the metrics for any asynchronous being spawned bythreads
the originating business transaction.

The Transaction Snapshot Flow Map for a transaction with asynchronous activity displays both
synchronous time and time spent in asynchronous activity. The following are example screen
shots of transactions with asynchronous activities:

Copyright © AppDynamics 2012-2014 Page 280

On the transaction flow map, AppDynamics displays the following metrics:

Metric Name Explanation

1. Tier Response Time (ms) Time spent processing at a particular tier for
this business transaction. Only present for
originating tier snapshots. (first in chain)

2. Percentage of Time Spent (%) Percentage metric represents the fraction of
time spent processing at a particular tier or in
communication with other tiers/backends from
the entire execution lifespan of a business
transaction. Only present for "first in chain"
snapshots. This metric does not include the
processing time of the asynchronous activities

Copyright © AppDynamics 2012-2014 Page 281

3. Asynchronous Activity Processing Time
(ms)

Processing time of all asynchronous activities
at this tier. This metric does not contribute to
the overall tier response time because the
activity is asynchronous by nature. This metric
is calculated by adding the execution times of
all asynchronous activities at a tier and the
time spent in communication between other
tiers and backends as follows:

Asynchronous Activity Processing Time =
Asynchronous-activity-1-processing-time +
Asynchronous-activity-2-processing-time + so
on.

4. Execution Time (ms) Time spent processing by the business
transaction in all affected tiers and
communication with other tiers and backends.
This metric does not include processing time
of the asynchronous activities. However, in
the case of Wait-for-Completion, the
originating business transaction will take a
longer time processing the request due to
blocking and waiting for all the activities to
complete before proceeding.

The formula for this metric is calculated by
summing up the processing times of a
Business Transaction at a particular
Tier/communication between Tiers/Backends
as follows:

Execution Time =
Time-spent-processing-in-Tier-1 +
Time-spent-processing-in-Tier-2 +
Time-spent-communicating-with-Tier-2 + so
on.

5. Call back to same tier (ms) This label and corresponding value are not
always present. When a tier makes an exit call
and the call is received back by the same tier
then this is displayed. The metric value
corresponds to the time spent in the call from
the moment the call went out of the tier until
the point the call returned back to the caller.
If the label contains "async" then the exit call
was made asynchronously.

Threads and Thread Tasks in the Metric Browser

In a multi-threaded transaction, AppDynamics reports key business transaction performance

Copyright © AppDynamics 2012-2014 Page 282

metrics for individual threads in a Thread Tasks branch of the tier in the Metric Browser. The
Thread Tasks branch is created only for multi-threaded transactions.

The Metric Browser path is Business Transaction Performance -> Business Transactions ->
 as shown here:tier-name -> business-transaction-name -> Thread Tasks

Thread Tasks are also reported in tiers under Overall Application Performance, where you can see
metrics on specific calls made by each thread in a node or in a tier.

Copyright © AppDynamics 2012-2014 Page 283

Threads in Call Graphs

When you drill down in a transaction snapshot for a tier with multiple calls, AppDynamics displays
the list of calls that you can drill down into.

Select a call from the list and double-click or click to access the call graph.Drill Down into Call

Diagnostic sessions are automatically triggered based on the average response time of the
originating thread of a business transaction. See .Diagnostic Sessions
To configure snapshots based on KPIs of an asynchronous thread, use a custom health rule
based on the thread KPI of interest and set up a policy to trigger a diagnostic session on the
business transaction. See .Diagnostic Sessions

To Drill Down into Downstream Calls on a Thread

http://docs.appdynamics.com/display/PRO14S/Diagnostic+Sessions
http://docs.appdynamics.com/display/PRO14S/Diagnostic+Sessions

Copyright © AppDynamics 2012-2014 Page 284

If the call graph indicates Async Activity in the Exit Call/Threads column, you can drill down further
into the downstream call on the thread:

1. Click in the Exit Calls/Threads Column for the call that you want to drill downAsync Activity
from.
2. In the Exit Calls and Async Activities window, click .Drill Down into Downstream Call

A call graph for the downstream call opens.

Thread Metrics in Health Rules

You can create a custom health rule based on the performance metrics for a thread task.

When you click the metric icon in the Health Rule Wizard, the embedded metric browser includes
the Thread Tasks if the entity for which you are configuring the health rule spawns multiple
threads.

Copyright © AppDynamics 2012-2014 Page 285

See .Configure Health Rules

Learn More

Configure Multi-Threaded Transactions for Java
Metric Browser
Call Graphs
Health Rules
Configure Health Rules
Configure Diagnostic Sessions For Asynchronous Activity

Service Endpoint Monitoring

Service Endpoints for Monitoring Specific Services
Understand Service Endpoints
View Service Endpoint Metrics

Key Performance Indicators and Transaction Scorecard
Service Endpoints in the Metric Browser

Configure Service Endpoints
Prerequisites for Configuring Service Endpoints
To configure service endpoints

Learn More

Service Endpoints for Monitoring Specific Services

In complex, large-scale applications, some application services may span multiple tiers. If you are
an owner of an application service, you may need metrics on that specific service as opposed to
metrics from across an entire business transaction or entire tier. Service endpoints allow you to
obtain a subset of metrics and associated snapshots for your service so that you can focus on the
information truly of interest to you. Using service endpoints, you can define a set of entry points
into your specific service to create a customized view in the AppDynamics UI that displays the key
performance indicators, associated snapshots, and metrics that affect only that service. You can
understand the performance of your service and quickly drill down to snapshots that affect your
service, instead of sifting through snapshots for the entire tier or business transaction.

http://docs.appdynamics.com/display/PRO14S/Configure+Health+Rules
http://docs.appdynamics.com/display/PRO14S/Metric+Browser
http://docs.appdynamics.com/display/PRO14S/Call+Graphs
http://docs.appdynamics.com/display/PRO14S/Health+Rules
http://docs.appdynamics.com/display/PRO14S/Configure+Health+Rules

Copyright © AppDynamics 2012-2014 Page 286

Understand Service Endpoints

Service endpoints are similar to business transactions except that they report metrics at theonly
entry point and do not track metrics for any downstream segments. Service endpoints are not
automatically detected like business transactions are detected; you must specify the entry points
for service endpoints. Service endpoints support the same entry point types as business
transactions and you configure them in a similar way.

Snapshot information for the service endpoint refers back to the originating business transaction
snapshot that goes through service endpoint-defined entry points.

All normal metric operations of metrics are observed for metrics collected by the service
endpoint; this includes metrics registration and metric rollups for tiers, limits on number of metrics,
and other standard operations. Captured metrics for service endpoints are limited to entry point
metrics. Custom metrics are not supported on service endpoints.

Diagnostic sessions cannot be started on the service endpoints; however, you can create
diagnostic sessions on the originating business transaction.

Additional load on the system for service endpoints is negligible. For example, with 1000 agents,

Service endpoints are supported only on the App Agent for Java at this time.

http://docs.appdynamics.com/download/attachments/18985418/ServiceEndpoints.png?version=3&modificationDate=1400615942000&api=v2

Copyright © AppDynamics 2012-2014 Page 287

1.
2.

3.
4.

additional metric traffic amounts to only 30K. Approximately three metrics are captured per service
endpoint and the agent has a default limit of 100 service endpoints.

View Service Endpoint Metrics

Key Performance Indicators and Transaction Scorecard

On the left-hand navigation menu, click a .Tier
On the right-hand side of the Tier Flow Map, click . Service Endpoints

Key performance indicator metrics along with transaction scorecards display.

The information displayed relates only to the service endpoints entry points defined for the
tier.
Double-click a service endpoint name to see the Service Endpoints Transaction Snapshots.
Click the snapshot or double-click the Business Transaction, Tier, or Node links for
additional details. These details help you to troubleshoot problems with your service.

Copyright © AppDynamics 2012-2014 Page 288

4.

Service Endpoints in the Metric Browser

At a glance, you can see the performance of your service by looking at the service endpoints in the
Metric Browser.

Configure Service Endpoints

Prerequisites for Configuring Service Endpoints

In order to configure Service Endpoints, your user account must have "Configure Service
Endpoints" permissions for the application. For information about configuring user permissions for

Copyright © AppDynamics 2012-2014 Page 289

1.

2.

3.
4.

5.

applications, see .To Configure the Default Application Permissions

To configure service endpoints

Determine which object you want to instrument.
You can instrument service endpoints just as you would business transactions, on the same
objects, using the same matching and exclude rules, etc...
From the left-hand navigation menu, click Configure -> Instrumentation -> < > ->Tier

, where <Tier> is the tier on which the service runs that interests you.Service Endpoints
Or
From the left-hand navigation menu, click the tier on which the service runs that interests
you, and then click -> .Service Endpoints Configure

Select the tier where you want to insert the service endpoint.
On the panel, click the and then in the dialog that appears,Service Endpoints Definition +,
select the . Entry Point Type
Define the service endpoint as you would a business transaction.
For information on defining business transactions, see Configure Business Transaction

.Detection

Learn More

Configure Business Transaction Detection

Monitoring in a Development Environment

Using AppDynamics in a non-production environment is useful for capturing and troubleshooting
issues while your applications are under development before you move them into production. To
facilitate greater flexibility into the amount of visibility into your environment, AppDynamics
provides the following monitoring levels when using the App Agent for Java.

Production is the normal operational mode that optimizes agent performance for your
environment, where you have set the balance between transaction visibility and overhead.
Development can be used in non-production environments where overhead is less of a
concern. When Development mode is enabled, the system relaxes the various limits
associated with data capture. AppDynamics disables all limits that are intended to reduce
overhead in order to increase the amount of data captured, such as disabling limits to the
number of call graphs and SQL statements to capture. As a safeguard, when the load

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions
http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection
http://docs.appdynamics.com/display/PRO13S/Configure+Business+Transaction+Detection

Copyright © AppDynamics 2012-2014 Page 290

1.
2.

reaches the maximum number of calls per minute you pre-defined or heap utilization
reaches the maximum value you defined for Development, AppDynamics re-enables all of
the limits.

To Change the Monitoring Level

In the left-hand navigation menu of the Application Dashboard, click .Configure
Click the monitoring level and choose either or .Production Development

Effects of Using Development Mode

The Development monitoring level controls a set of agent property values that affect the agent
behavior to increase visibility, resolution, and decrease data latency at the expense of
overhead. The following describes the effects of using Development mode:

SQL and JDBC Captures: When in Development mode any constraints on SQL captures
and all other exit calls as well are relaxed. All SQL statements are collected, without a per
transaction limit, as well all JDBC calls attached to the method are collected, even if the
duration of the call is less than < 10 ms, which is the normal cut off point for JDBC call
collection.
Call Graphs: All call graphs are captured during Development mode.
Snapshots: A snapshot is taken for every transaction, including slow and error

Prerequisite for Changing the Development Level
In order to change the Monitoring Level, your user account must have "Configure
Monitoring Level (Production/Development)" permissions for the application. For
information about configuring user permissions for applications, see To Configure the
Default Application Permissions.
Define the maximum number-of-calls-per-minute safeguard using the dev-mode-sus

 app agent node property.pend-cpm
Optionally, define the maximum Java heap utilization percentage for development
mode, using the heap-storage-monitor-devmode-disable-trigger-pct app agent node

.property

http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions
http://docs.appdynamics.com/display/PRO14S/Configure+Custom+Roles#ConfigureCustomRoles-ToConfiguretheDefaultApplicationPermissions
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-dev-mode-suspend-cpm
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-dev-mode-suspend-cpm
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-heap-storage-monitor-devmode-disable-trigger-pct

Copyright © AppDynamics 2012-2014 Page 291

transactions.

App Agent Node Properties Ignored During Development Mode

While in Development mode, the values for the following app agent node properties are ignored:

max-concurrent-snapshots
on-demand-snapshots

Troubleshoot Java Application Problems

Troubleshoot Slow Response Times for Java

How Do You Know Response Time is Slow?
Troubleshooting Steps

Step 1 - Slow or stalled business transactions?
Step 2 - Slow DB or remote service calls?
Step 3 - Affects 1 or more nodes?
Step 4 - Backend problem?
Step 5 - CPU saturated?
Step 6 - Significant garbage collection activity?
Step 7 - Memory leak?
Step 8 - Resource leak?
None of the above?

How Do You Know Response Time is Slow?

There are many ways you can learn that your application's response time is slow:

You received an email or SMS alert from AppDynamics (see). The alertAlert and Respond
provides details about the problem that triggered the alert. If the problem is related to slow
response time, start troubleshooting at .Step 1
Someone reported a problem such as "it's taking a long time to check out" or "the app timed
out when I tried to add an item to the cart."
The problem is slow response time related to one or more business transactions. Start
troubleshooting at .Step 1
A custom dashboard shows a problem. If the problem is related to slow response time, start
troubleshooting at .Step 1
You are looking at the Application Dashboard for a business application, shown below:

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-max-concurrent-snapshots
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-on-demand-snapshots
http://docs.appdynamics.com/display/PRO14S/Alert+and+Respond

Copyright © AppDynamics 2012-2014 Page 292

1.

2.

3.

4.

Look at the traffic flow lines in the flow map, the Business Transaction Health pane, the
Transaction Scorecard pane, and the Response Time graph. If you see problems (yellow or
red lines, spikes in response time), the problem is slow response time, and is probably
related to your AppDynamics business application. Start troubleshooting at .Step 1
Look at the Tier icons in the flow map. If you see yellow or red, you have a problem with one
or more nodes, which may or may not result in slow response time. Start troubleshooting at

.Step 3
Look at the Events pane. If you see red or yellow, the problem reflects a change in
application state that is of potential interest, which may or may not result in slow response
time. See .Tutorial for Java - Troubleshooting using Events
Look at the Server Health pane. If you see red or yellow, the problem reflects a server health
rule violation, which may or may not result in slow response time. See Tutorial for Java -

.Server Health

Need more help?

Application Dashboard
Flow Maps

Troubleshooting Steps

The following steps help you determine whether your problem is related to your business
application or to your hardware or software infrastructure. Each step shows you how to display
detailed information to help you pinpoint the source of the problem and quickly resolve it.

Step 1 - Slow
or stalled
business
transactions
?

http://docs.appdynamics.com/display/PRO14S/Application+Dashboard
http://docs.appdynamics.com/display/PRO14S/Flow+Maps

Copyright © AppDynamics 2012-2014 Page 293

Are there any slow or stalled business transactions?
How do I know?
How do I know if business transactions are slow or stalled?

1. Click Troubleshoot -> Slow Response Times
You can also access this information from tabs in the
various dashboards.

2. Click the tab if it is not selected.Slow Transactions

In the upper pane AppDynamics displays a graph of
the slow, very slow, and stalled transactions for the
time period specified in the Time Range drop-down
menu. If the load is not displayed, you can click the
Plot Load checkbox at the upper right to see the load.
In the lower pane AppDynamics displays the
transaction snapshots for slow, very slow, and stalled
transactions.

If you see one or more slow transaction snapshots on this
page, the answer to this question is Yes. Otherwise, the
answer is No.

No – Go to .Step 2

Yes – You have one or more slow or stalled transactions, and
need to drill down to find the root cause.

Copyright © AppDynamics 2012-2014 Page 294

1.

2.

3.

In the lower pane of the Slow Transactions tab, click the
Exe Time column to sort the transactions from slowest to
fastest.
Select a snapshot from the list and click View
Transaction Snapshot. You see the Transaction Flow
Map. Choose the Flow Map tab if it is not already
selected.

Click a Drill Down icon to display a call graph for a
problematic part of the transaction. Once you are in the
call graph you can look for methods that have a
significant response time. In this example, the
executeQuery method is responsible for 54.5% of
response time.

Copyright © AppDynamics 2012-2014 Page 295

4. Click the Information icon in the right column to see more
details. Provide this information to the personnel
responsible for addressing this issue.

If there are multiple slow or stalled transactions, repeat this
step until you have resolved them all. However, there may
be additional problems you haven't resolved. Continue to S

.tep 2

Need more help?

Transaction Snapshots

Step 2 - Slow
DB or remote
service
calls?

Is there one or more slow DB or remote service call?
How do I know?
How do I know if I have slow DB or remote service calls?

1. Click , then clickTroubleshoot -> Slow Response Times
the tab if it is notSlowest DB & Remote Service Calls
selected.

If you see one or more slow calls on this page, the answer to
this question is Yes. Otherwise, the answer is No.

http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

Copyright © AppDynamics 2012-2014 Page 296

No – Go to .Step 3

Yes – You have one or more slow DB or remote service calls,
and need to drill down to find the root cause.

Copyright © AppDynamics 2012-2014 Page 297

1.

2.

3.

4.

5.

In the Call Type panel select the type of call for which you
want to see information, or select All Calls.
Sort by Average Time per Call to display the slowest calls
at the top of the list.
To see transaction snapshots for the business
transaction that is correlated with a slow call, you can:

Click the link in the right columnView Snapshots
to display correlated snapshots in a new window.
Select the call and click the Correlated Snapshots
tab in the lower panel to display correlated
snapshots at the bottom of the screen.

Select a snapshot from the list and click View
Transaction Snapshot. Choose the Flow Map tab if it is
not already selected, then click a Drill Down icon to
display a call graph for a problematic part of the
transaction.

Once you are in the call graph you can look for methods
that have a significant response time. In this example, an
Oracle query is responsible for 99.7% of response time.
Provide this information to the personnel responsible for
addressing this issue.

Copyright © AppDynamics 2012-2014 Page 298

If there are multiple slow calls, repeat this step until you have
resolved them all. However, there may be additional problems
you haven't resolved. If any of the tier icons on the flow map
show yellow or red, continue to . Otherwise, you haveStep 3
isolated the problem and don't need to continue with the rest of
the steps below.

Need more help?

Business Transaction Dashboard
Business Transaction Monitoring
Business Transactions List
Transaction Snapshots

Step 3 -
Affects 1 or
more nodes?

Is the problem affecting all nodes in the slow tier?
How do I know?
How do I know if the problem is affecting all nodes?

In the Application or Tier Flow Map, click the number
that represents how many nodes are in the tier. This
provides a quick overview of the health of each node
in the tier. The small circle icon indicates whether the
server is up with the agent reporting, and the larger
circle icon indicates Health Rule violation status.

If all the nodes are yellow or red, the answer to this
question is Yes. Otherwise, the answer is No.

Yes – Go to .Step 4

No – The problem is either in the node's hardware or in the
way the software is configured on the node. (Because only
one node is affected, the problem is probably not related to
the code itself.)

http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Dashboard
http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Monitoring
http://docs.appdynamics.com/display/PRO14S/Business+Transactions+List
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

Copyright © AppDynamics 2012-2014 Page 299

In the left navigation pane, click Servers -> App Servers
 to display the-> <slow tier> -> <problematic node>

Node Dashboard (flow map).

Click the Dashboard tab to get a view of the overall
health of the node.
Click the Hardware tab; if the problem is
hardware-related, contact your IT department.
Click the Memory tab; sort on various column headings to
determine if you need to add memory to the node,
configure additional memory for the application, or take
some other corrective action.

You have isolated the problem and don't need to continue
with the rest of the steps below.

Need more help?

Node Dashboard

Step 4 -
Backend
problem?

Are the nodes in the slow tier linked to a backend (database or
other remote service) that might be causing your problem?

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard

Copyright © AppDynamics 2012-2014 Page 300

How do I know?
How do I know if the nodes are linked to a backend (database or
other remote service) that might be causing my problem?

Display the Tier Flow Map. If any nodes are linked to a
backend, links to those backends are displayed in the
flow map.

If a backend or the line connecting to a backend is
yellow or red, the answer to this question is Yes.
Otherwise, the answer is No.

No – Go to .Step 5

Yes –

Click the line connecting to the backend to see an
information window about the backend. (The
contents of the information window vary depending
on the type of backend.) Use the various tabs to
find the source of the issue, or contact the team
responsible for that backend.

Copyright © AppDynamics 2012-2014 Page 301

If the backend is a database, right-click the database icon.
You have a number of options that let you see the
dashboard, drill down, etc. If you have AppDynamics for
Databases, choose Link to AppDynamics for Databases.
You can use AppDynamics for Databases to diagnose and
resolve any backend issues, or work with your internal
DBAs to troubleshoot the database, which is not
instrumented in AppDynamics.

You have isolated the problem and don't need to continue
with the rest of the steps below.

Need more help?

Backend Monitoring
Configure Backend Detection for Java
AppDynamics for Databases

Step 5 - CPU
saturated?

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/ADDB/AppDynamics+for+Databases

Copyright © AppDynamics 2012-2014 Page 302

1.
2.
3.

Is the CPU of the JVM saturated?
How do I know?
How do I know if the CPU of the JVM is saturated?

Display the Tier Flow Map.
Click the Nodes tab, and then click the Hardware tab.
Sort by CPU % (current). .Show me how

If the CPU % is 90 or higher, the answer to this
question is Yes. Otherwise, the answer is No.

Yes – Go to .Step 6

No – The issue is probably related to a custom
implementation your organization has developed. Take
snapshots of the affected tier or node(s) and work with
internal developers to resolve the issue.

You have isolated the problem and don't need to continue
with the rest of the steps below.

Need more help?

Monitor JVMs

Step 6 -
Significant
garbage
collection
activity?

http://docs.appdynamics.com/download/attachments/20190325/jvm_sat.gif?version=1&modificationDate=1395796847000&api=v2

Copyright © AppDynamics 2012-2014 Page 303

Is there significant garbage collection activity?
How do I know?
How do I know if there is significant garbage collection activity?

Display the Tier Flow Map.
Click the Nodes tab, and then click the Memory
tab.
Sort by GC Time Spent to see how many
milliseconds per minute is being spent on GC;
60,000 indicates 100%. .Show me how

If GC Time Spent is higher than 500 ms, the answer to
the question in Step 5 is Yes. Otherwise, the answer is
No.

Yes – Go to .Step 7

No – Go to .Step 8

Need more help?

Memory Usage and Garbage Collection

Step 7 -
Memory
leak?

http://docs.appdynamics.com/download/attachments/20190325/gc_time_spent.gif?version=1&modificationDate=1395796859000&api=v2
http://docs.appdynamics.com/display/PRO14S/Monitor+JVMs#MonitorJVMs-MemoryUsageandGarbageCollection

Copyright © AppDynamics 2012-2014 Page 304

1.

2.

3.

Is there a memory leak?
How do I know?
How do I know if there is a memory leak?

From the list of nodes displayed in the previous step
(when you were checking for Garbage Collecting
activity), double-click a node that is experiencing
significant GC activity.
Click the Memory tab, then scroll down to display the
Memory Pool graphs at the bottom of the window.
Double-click the PS Old Gen memory pools. Show

.me how

If memory is not being released (use is trending
upward), the answer to this question is Yes. Otherwise,
the answer is No.

Yes – Use various AppDynamics features to track down
the leak. One useful tool for diagnosing a memory leak is
object instance tracking, which lets you track objects you
are creating and determine why they aren't being released
as needed. Using object instance tracking, you can
pinpoint exactly where in the code the leak is occurring.
For instructions on configuring object instance tracking, as
well as links to other tools for finding and fixing memory
leaks, see below.Need more help?

No – Increase the size of the JVM. If there is significant GC
activity but there isn't a memory leak, then you probably
aren't configuring a large enough heap size for the
activities the code is performing. Increasing the available
memory should resolve your problem.

Whether you answered Yes or No, you have isolated the
problem and don't need to continue with the rest of the
steps below.

Need more help?

Troubleshoot Java Memory Leaks
Troubleshoot Java Memory Thrash
Configure and Use Object Instance Tracking for Java

http://docs.appdynamics.com/download/attachments/20190325/mem_leak.gif?version=1&modificationDate=1395796833000&api=v2
http://docs.appdynamics.com/download/attachments/20190325/mem_leak.gif?version=1&modificationDate=1395796833000&api=v2

Copyright © AppDynamics 2012-2014 Page 305

1.

2.

3.

Step 8 -
Resource
leak?

Is there a resource leak?
How do I know?
How do I know if there is a resource leak?

In the left Navigation pane, go to (for example) Analyz
e -> Metric Browser -> Application Infrastructure
Performance <slow tier> -> Individual Nodes ->
<Problematic node> -> JMX -> JDBC Connection
Pools -> <Pool name>
Add the Active Connections and Maximum
Connections metrics to the graph.
Repeat as needed for various pools your application is
using.

If connections are not being released (use is trending
upward), the answer to the question in Step 7 is Yes.
Otherwise, the answer is No.

Yes – To determine where in your code resources are
being created but not being released as needed, take a
few thread dumps using standard commands on the
problematic node. You can also create a diagnostic action
within AppDynamics to create a thread dump; see Thread

.Dump Actions

No – Restart the JVM. If none of the above diagnostic
steps addressed your issue, it's possible you're simply
seeing a one-time unusual circumstance, which restarting
the JVM can resolve.

Need more help?

Diagnostic Actions

http://docs.appdynamics.com/display/PRO14S/Diagnostic+Actions#DiagnosticActions-ThreadDumpActions(Javaonly)
http://docs.appdynamics.com/display/PRO14S/Diagnostic+Actions#DiagnosticActions-ThreadDumpActions(Javaonly)
http://docs.appdynamics.com/display/PRO14S/Diagnostic+Actions

Copyright © AppDynamics 2012-2014 Page 306

1.

None of the
above?

If slow response time persists even after you've completed the
steps outlined above, you may need to perform deeper
diagnostics.

If you can't find the information you need on how to do so in the
AppDynamics documentation, consider posting a note about
your problem in a community discussion topic. These
discussions are monitored by customers, partners, and
AppDynamics staff. Of course, you can also contact
AppDynamics support.

Need more help?

AppDynamics Pro Documentation
Community Discussion Boards (If you don't see
AppDynamics Pro as a topic, click Sign In at the upper
right corner of the screen.)

Configure Diagnostic Sessions For Asynchronous Activity

Automatic Diagnostic Sessions For Asynchronous Activity

Diagnostic sessions are triggered based on the performance metrics for a business transaction.
The average response time of a business transaction does not include the execution time of its
asynchronous activity. If you have asynchronous processing in your application, it might be
possible for the originating transaction to execute within normal bounds even though the
asynchronous activity takes longer than normal. To diagnose an issue like this, you can create a
custom health rule based on the average response time (or other performance metric) of the
asynchronous activity and use that health rule to set up a policy that triggers a diagnostic session
on the transaction. The general steps to do this are described in the following example that uses a
metric for an async thread task.

Create a custom health rule based on the asynchronous metric, such as average response
time. The metrics for thread tasks are visible in the metric browser under the Thread Tasks
node for transactions with asynchronous activity. Each thread task has an individual node

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Pro+Documentation
http://community.appdynamics.com/t5/Discussions/ct-p/Discussions
http://docs.appdynamics.com/display/PRO14S/Configure+Health+Rules#ConfigureHealthRules-custom-health-rule

Copyright © AppDynamics 2012-2014 Page 307

1.

2.

3.

(usually its simple class name). Remember to select Custom as the type for the health rule.

Create a policy that is based on the baseline of the asynchronous metric of interest, for
example, the average response time.
Configure the policy to trigger a diagnostic session on the affected business transaction.

Troubleshoot Java Memory Issues

Troubleshoot Java Memory Leaks

Memory Leaks in a Java Environment
AppDynamics Java Automatic Leak Detection

Automatic Leak Detection Support
Conditions for Troubleshooting Java Memory Leaks

Workflow to Troubleshoot Memory Leaks
Monitor Memory for Potential JVM Leaks
Enable Memory Leak Detection
Troubleshoot Memory Leaks

Select the Collection Object to Monitor
Use Content Inspection
Use Access Tracking

Learn More

http://docs.appdynamics.com/display/PRO14S/Configure+Policies

Copyright © AppDynamics 2012-2014 Page 308

Memory Leaks in a Java Environment

While the JVM's garbage collection greatly reduces the opportunities for memory leaks to be
introduced into a codebase, it does not eliminate them completely. For example, consider a web
page whose code adds the current user object to a static set. In this case, the size of the set grows
over time and could eventually use up significant amounts of memory. In general, leaks occur
when an application code puts objects in a static collection and does not remove them even when
they are no longer needed.

In high workload production environments if the collection is frequently updated, it may cause the
applications to crash due to insufficient memory. It could also result in system performance
degradation as the operating system starts paging memory to disk.

AppDynamics Java Automatic Leak Detection

AppDynamics automatically tracks every Java collection (for example, HashMap and ArrayList)
that meets a set of criteria defined below. The collection size is tracked and a linear regression
model identifies whether the collection is potentially leaking. You can then identify the root cause
of the leak by tracking frequent accesses of the collection over a period of time.

Once a collection is qualified, its size, or number of elements, is monitored for long term growth
trend. A positive growth indicates that the collection as potentially leaking!

Once a leaking collection is identified, the agent automatically triggers diagnostics every 30
minutes to capture a shallow content dump and activity traces of the code path and business
transactions that are accessing the collection. By drilling down into any leaking collection
monitored by the agent, you can manually trigger Content Summary Capture and Access Tracking
sessions. See Configure Automatic Leak Detection for Java

You can also monitor memory leaks for custom memory structures. Typically custom memory
structures are used as caching solutions. In a distributed environment, caching can easily become
a prime source of memory leaks. It is therefore important to manage and track memory statistics
for these memory structures. To do this, you must first configure custom memory structures. See

.Configure and Use Custom Memory Structures for Java

Automatic Leak Detection Support

Ensure AppDynamics supports Automatic Leak Detection on your JVM. See .JVM Support

Conditions for Troubleshooting Java Memory Leaks

Automatic Leak Detection uses On Demand Capture Sessions to capture any actively used
collections (i.e. any class that implements JDK Map or Collection interface) during the Capture
period (default is 10 minutes) and then qualifies them based on the following criteria:

For a collection object to be identified and monitored, it must meet the following conditions:

The collection has been alive for at least minutes. Default is 30 minutes, configurable withN
the node property.minimum-age-for-evaluation-in-minutes
The collection has at least elements. Default is 1000 elements, configurable with the N mini

 node property.mum-number-of-elements-in-collection-to-deep-size
The collection Deep Size is at least MB. Default is 5 MB, configurable with the N minimum-si

 property.ze-for-evaluation-in-mb
The Deep Size is calculated by traversing recursive object graphs of all the objects in

http://docs.appdynamics.com/display/PRO14S/Supported+Environments+and+Versions
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-age-for-evaluation-in-minutes
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimumnumberofelementsincollectiontodeepsize
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimumnumberofelementsincollectiontodeepsize
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-size-for-evaluation-in-mb
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference#AppAgentNodePropertiesReference-minimum-size-for-evaluation-in-mb

Copyright © AppDynamics 2012-2014 Page 309

the collection.

See and .App Agent Node Properties App Agent Node Properties Reference by Type

Workflow to Troubleshoot Memory Leaks

Use the following workflow to troubleshoot memory leaks on JVMs that have been identified with a
potential memory leak problem:

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties+Reference+by+Type

Copyright © AppDynamics 2012-2014 Page 310

Monitor Memory for Potential JVM Leaks

Copyright © AppDynamics 2012-2014 Page 311

Use the Node Dashboard to identify the memory leak. A possible memory leak is indicated by a
growing trend in the heap as well as the old/tenured generation memory pool.

An object is automatically marked as a potentially leaking object when it shows a positive and
steep growth slope.

The Automatic Memory Leak dashboard shows:

Collection Size: The number of elements in a collection.

Potentially Leaking: Potentially leaking collections are marked as red. You should start
diagnostic sessions on potentially leaking objects.

Status: Indicates if a diagnostic session has been started on an object.

Collection Size Trend: A positive and steep growth slope indicates potential memory leak.

Tip: To identify long-lived collections compare the JVM start time and Object Creation Time.

Copyright © AppDynamics 2012-2014 Page 312

1.

2.

If you cannot see any captured collections, ensure that you have correct configuration for detecting
potential memory leaks.

Enable Memory Leak Detection

Before enabling memory leak detection, identify the potential JVMs that may have a leak. See Det
.ect Memory Leaks

Memory leak detection is available through the Automatic Leak Detection feature. Once the
Automatic Leak Detection feature is turned on and a capture session has been started,
AppDynamics tracks all frequently used collections; therefore, using this mode results in a higher
overhead. Turn on Automatic Leak Detection mode only when a memory leak problem is identified
and then start an On Demand Capture Session to start monitoring frequently used collections and
detect leaking collections.

Turn this mode off after you have identified and resolved the leak.

To achieve optimum performance, start diagnosis on an individual collection at a time.

Troubleshoot Memory Leaks

After detecting a potential memory leak, troubleshooting the leak involves performing the following
three actions:

Select the Collection Object that you want to monitor
Use Content Inspection
Use Access Tracking

Select the Collection Object to Monitor

On the Automatic Leak Detection dashboard, select the name of the class that you want to
monitor.
Click on the top left-hand side of the memory leak dashboard.Drill Down
Alternatively right-click the class name and click .Drill Down

 To achieve optimum performance, start the troubleshooting session on aIMPORTANT:
single collection object at a time.

Copyright © AppDynamics 2012-2014 Page 313

1.
2.
3.
4.
5.

Use Content Inspection

Use Content Inspection to identify which part of the application the collection belongs to so that
you can start troubleshooting. It allows monitoring histograms of all the elements in a particular
collection.

As described above in , enable Automatic LeakWorkflow to Troubleshoot Memory Leaks
Detection, start an On Demand Capture Session, select the object you want to troubleshoot, and
then follow the steps listed below:

Click the Content Inspection tab.
Click to start the content inspection session.Start Content Summary Capture Session
Enter the session duration. Allow at least 1-2 minutes for data generation.
Click to retrieve the session data.Refresh
Click on the snapshot to view details about an individual session.

Exporting Troubleshooting Information
You can also export the troubleshooting information into Excel files using the Export button
under Content Summary.

Copyright © AppDynamics 2012-2014 Page 314

1.
2.
3.
4.
5.

Use Access Tracking

Use Access Tracking to view the actual code paths and business transactions accessing the
collections object.

As described above in , enable Automatic LeakWorkflow to Troubleshoot Memory Leaks
Detection, start an On Demand Capture Session, select the object you want to troubleshoot, and
then follow the steps listed below:

Select the Access Tracking tab
Click to start the tracking session.Start Access Tracking Session
Enter the session duration. Allow at least 1-2 minutes for data generation.
Click to retrieve session data.Refresh
Click on the snapshot to view details about an individual session.

Exporting Troubleshooting Information
You can also export the troubleshooting information into Excel files using the Export button
under Content Summary.

Copyright © AppDynamics 2012-2014 Page 315

Learn More

App Agent Node Properties
Monitor JVMs
Metric Browser

Troubleshoot Java Memory Thrash

Memory Thrash and Object Instance Tracking
Prerequisites for Object Instance Tracking

Specifying the Classpath
Workflow for Detecting and Troubleshooting Memory Thrash
Analyzing Memory Thrash

To analyze memory thrash problems
To verify memory thrash

Troubleshooting Java Memory Thrash Using Allocation Tracking
To use allocation tracking

Memory Thrash and Object Instance Tracking

Memory thrash is caused when a large number of temporary objects are created in very short
intervals. Although these objects are temporary and are eventually cleaned up, the
garbage collection mechanism may struggle to keep up with the rate of object creation. This may
cause application performance problems. Monitoring the time spent in garbage collection can
provide insight into performance issues, including memory thrash. For example, an increase in the
number of spikes for major collections either slows down a JVM or indicates potential memory
thrash To configureUse object instance tracking to isolate the root cause of the memory thrash.
and enable object instance tracking, see .Configure and Use Object Instance Tracking for Java

http://docs.appdynamics.com/display/PRO14S/App+Agent+Node+Properties
http://docs.appdynamics.com/display/PRO14S/Metric+Browser

Copyright © AppDynamics 2012-2014 Page 316

AppDynamics automatically tracks the following classes:

Application Classes
System Classes

The Object Instance Tracking feature maps a histogram of every object in the JVM. The Object
Instance Tracking dashboard not only provides the number of instances for a particular class but
also provides the shallow memory size (the memory footprint of the object and the primitives it
contains) used by all the instances.

Prerequisites for Object Instance Tracking

Object Instance Tracking can be used only for Sun JVM v1.6.x and later.
If you are running with the JDK then tools.jar will probably be setup correctly, but if you are
running with the JRE you must add tools.jar to JRE_HOME/lib/ext and restart the JVM for
this feature to start working. You can find the tools.jar file in JAVA_HOME/lib/tools.jar.
In some cases In some cases you might also need to copy libattach.so (Linux) or attach.dll
(Windows) from your JDK to your JRE.
Depending on the JDK version, you may also need to specify the classpath as shown below
(along with other -jar options).

Specifying the Classpath

When using a JDK tool, set the classpath using the -classpath option. This sets the classpath for
the application only. For example:

On Windows

java -classpath <complete-path-to-tools.jar>;%CLASSPATH% -jar myApp.jar

OR

Copyright © AppDynamics 2012-2014 Page 317

On Unix

java -classpath <complete-path-to-tools.jar>:$CLASSPATH -jar myApp.jar

Alternatively, you can set the CLASSPATH variable for your entire environment. For example:

 On Windows

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

On Unix

CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar

Workflow for Detecting and Troubleshooting Memory Thrash

The following diagram outlines the workflow for monitoring and troubleshooting memory thrash
problems in a production environment.

To monitor memory leaks, on the node dashboard, use the Memory -> Automatic Leak
Detection subtab. See .Troubleshoot Java Memory Leaks

Copyright © AppDynamics 2012-2014 Page 318

Copyright © AppDynamics 2012-2014 Page 319

1.

Analyzing Memory Thrash

To analyze memory thrash problems

Once a memory thrash problem is identified in a particular collection, start the diagnostic session
by drilling down into the suspected problematic class.

Select the class name to monitor and click at the top of the Object InstanceDrill Down
Tracking dashboard.

Or right click the class name and select the Drill Down option.

After the drill down action is triggered, data collection for object instances is performed every
minute. This data collection is considered to be a diagnostic session and the Object Instance
Tracking dashboard for that class is updated with this icon , to indicate that a diagnostic
session is in progress.

The Object Instance Tracking dashboard indicates possible cases of memory thrash.

 For optimal performance, trigger a drill down action on a single instance or class name at
a time.

Copyright © AppDynamics 2012-2014 Page 320

1.

2.

The following provides more detail on the meaning of each of the columns on the Object Instance
Tracking dashboard.

Prime indicators of memory thrash problems are:

Current Instance Count: A high number indicates possible allocation of large number of
temporary objects.

Shallow Size: A large number for shallow size signals potential memory thrash.

Instance Count Trend: A saw wave is an instant indication of memory thrash.

If you suspect you have a memory thrash problem at this point, then you should verify that this is
the case. See .To verify memory thrash

To verify memory thrash

Select the class name to monitor and click at the top of the Object InstanceDrill Down
Tracking dashboard.
On the Object Instance Tracking window, click .Show Major Garbage Collections

The following Object Instance Tracking Overview provides further evidence of a memory thrash
problem.

Copyright © AppDynamics 2012-2014 Page 321

1.
2.
3.

4.
5.
6.
7.

If the instance count doesn’t vary with the garbage collection cycle, it is an indication of potential
leak and not a memory thrash problem. See .Troubleshoot Java Memory Leaks

Troubleshooting Java Memory Thrash Using Allocation Tracking

Allocation Tracking tracks all the code paths and those business transactions that are allocating
instances of a particular class.

Allocation tracking detects those code path/business transactions that are creating and throwing
away instances.

To use allocation tracking

Using the Drill Down option, trigger a diagnostic session.
Click the Allocation Tracking tab.
Click to start tracking code paths and businessStart Allocation Tracking Session
transactions.
Enter the session duration and allow at least 1-2 minutes for data generation.
Click to retrieve the session data.Refresh
Click on a session to view its details.
Use the Information presented in the Code Paths and Business Transaction panels to
identify the origin of the memory thrash problem.

Copyright © AppDynamics 2012-2014 Page 322

Detect Code Deadlocks for Java
Code Deadlocks and their Causes

Finding Deadlocks using the Events
List

To Examine a Code Deadlock
Finding Deadlocks Using the REST
API

Learn More

By default the agent detects code deadlocks. You can find deadlocks and see their details using
the Events list or the REST API.

Code Deadlocks and their Causes

In a multi-threading development environment, it is common to use more than a single lock.
However sometimes deadlocks will occur. Here are some possible causes:

The order of the locks is not optimal
The context in which they are being called (for example, from within a callback) is not correct
Two threads may wait for each other to signal an event

Finding Deadlocks using the Events List

Select (or just) in the Filter By Event Type list to see codeCode Problems Code Deadlock
deadlocks in the Events list. See . The following list shows twoFilter and Analyze Events
deadlocks in the ECommerce tier.

Read a real-life story about how
AppDynamics helped identify code
deadlocks and reduce the risk to
revenue!

http://docs.appdynamics.com/display/PRO14S/Filter+and+Analyze+Events
http://www.appdynamics.com/blog/2012/03/21/how-code-deadlock-can-kill-your-business/
http://www.appdynamics.com/blog/2012/03/21/how-code-deadlock-can-kill-your-business/
http://www.appdynamics.com/blog/2012/03/21/how-code-deadlock-can-kill-your-business/
http://www.appdynamics.com/blog/2012/03/21/how-code-deadlock-can-kill-your-business/

Copyright © AppDynamics 2012-2014 Page 323

To Examine a Code Deadlock

1. Double-click the deadlock event in the events list.
The Code Deadlock tab displays.Summary

2. To see details about the deadlock click the tab and scroll down.Details

Finding Deadlocks Using the REST API

You can detect a DEADLOCK event-type using the AppDynamics REST API. For details see the

Copyright © AppDynamics 2012-2014 Page 324

example .Retrieve event data

Learn More

Use the AppDynamics REST API

Tutorials for Java

This section provides tutorials for tasks in AppDynamics.

Quick Tour of the User Interface

Troubleshooting Application Errors

Identifying and troubleshooting errors in your Java application.

Overview Tutorials for Java

Quick Tour of the User Interface

http://docs.appdynamics.com/display/PRO14S/Use+the+AppDynamics+REST+API#UsetheAppDynamicsRESTAPI-Retrieveeventdata
http://docs.appdynamics.com/display/PRO14S/Use+the+AppDynamics+REST+API
https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html

Copyright © AppDynamics 2012-2014 Page 325

Use AppDynamics for the First Time with Java
All Applications Dashboard
Application Dashboard

Time Range
Flow Map and KPIs
Events
Transaction Scorecard
Exceptions and Errors

More Tutorials

This topic assumes that an application is already configured in AppDynamics, and uses the Acme
Online application as the example. It also assumes that you have already logged in to
AppDynamics.

This topic gives you an overview of how AppDynamics detects actual and potential problems that
users may experience in your application - transactions that are slow, stalled or have errors - and
helps you easily identify the root causes.

All Applications Dashboard

When you log into the Controller UI you see the All Applications dashboard.

https://education.appdynamics.com/video/quickTourOfTheUserInterface/story.html

Copyright © AppDynamics 2012-2014 Page 326

The All Applications dashboard shows high-level performance information about one or more
business applications. Load, response time, and errors are standard metrics that AppDynamics
calls "key performance indicators" or "KPIs". The others are:

Health Rule Violations and Policies: AppDynamics lets you , which consistsdefine a health rule
of a condition or a set of conditions based on metrics exceeding predefined thresholds or dynamic
baselines. You can then use health rules in policies to automate optional remedial actions to take if
the conditions trigger. AppDynamics also provides default health rules to help you get started.

Business Transaction Health: The health indicators are a visual summary of the extent to which
a business transaction is experiencing critical and warning health rule violations. See the slow

.transactions tutorial

Server Health: Additional visual indicators that track how well the server infrastructure is
performing. See the .server health tutorial

Application Dashboard

Click an application to monitor, one that has some traffic running through it. The Application
dashboard gives you a view of how well the application is performing.

http://docs.appdynamics.com/display/PRO14S/Health+Rules

Copyright © AppDynamics 2012-2014 Page 327

You see the dashboard for your application. The flow map on the left gives you an overview of
your servers (application servers, databases, remote servers such as message queues, etc.) and
metrics for the calls between them. Click, hold and move the icons around to arrange the flow
map. Use the scale slider and mini-map to change the view.

Time Range

From the time range drop-down in the upper-right corner select the time range over which to
monitor - the last 15 minutes, the last couple of hours, the last couple of days or weeks. Try a few
different time ranges and see how the dashboard data changes.

Flow Map and KPIs

In the flow map, click any of the blue lines to see more detail on the aggregated key performance
metrics (load, average response time and errors) between the two servers. See the flow maps

.tutorial

The graphs at the bottom of the dashboard show the key performance indicators over the selected
time range for the entire application.

Events

An event represents a change in application state. The Events pane lists the important events
occurring in the application environment. See the .events tutorial

Transaction Scorecard

The Transaction Scorecard panel shows metrics about business transactions within the specified
time range, covering the percentage of instances that are normal slow, very slow, stalled or have
errors. Slow and very slow transactions have completed. Stalled transactions never completed or

Copyright © AppDynamics 2012-2014 Page 328

timed out. define the level of performance for the slow, very slow andConfigurable thresholds
stalled categories. See the .Transaction Scorecard tutorial

Exceptions and Errors

An exception is a code-logged message outside the context of a business transaction. An error is
a departure from the expected behavior of a business transaction, which prevents the transaction
from working properly. See the .exceptions tutorial

More Tutorials

Monitoring Tutorials for Java

Tutorial for Java - Events

Monitoring Events
Filtering Events

Monitoring Events

1. From an application, tier or node dashboard, look at the panel.Events

The panel shows all the events that are monitored by AppDynamics. There are severalEvents
types of events:

Health Rule Violation Events include business transaction health rule events such as
average response time, and server health events such as Java VM Heap Utilization
Thresholds. To change what generates a health rule event, see .Health Rules
Slow Transaction Events occur when slow, very slow or stalled transactions are detected.
See .Configure Thresholds
Error Events occur when application exceptions are thrown or HTTP Errors are returned.
See .Configure Error Detection
Code Problem Events occur when a code deadlock is detected or a resource pool is

http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Health+Rules
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection

Copyright © AppDynamics 2012-2014 Page 329

utilized beyond the specified threshold. For example this event occurs when a JDBC
connection pool is above 80% utilized or when a java.lang.Thread is deadlocked.
Application Change Events occur when administrative changes are made to an application
tier. For example, this event occurs when an application server instance is restarted or when
a Java VM option is modified on an application server. See Monitor Application Change

.Events
AppDynamics Config Warnings occur when the AppDynamics infrastructure needs
attention. For example, when the Controller detects low disk space conditions on its host the
policy associated with this event type occurs. See .AppDynamics Administration
Custom events are user-defined events. See .Events

2. To get details click an event in the list. For example, click a slow request event to see the details
of the request in the transaction flow map so you can start troubleshooting the slow request.

For more information on resolving issues related to slow transactions, see Troubleshoot Slow
.Response Time for Java

Filtering Events

You can filter events by type in the panel. Click the type of event you want to see and clickEvents
. For example, to see only and events select the Search Deadlocks Resource Pool Exhaustion

 and click .Code Problem Event Search

http://docs.appdynamics.com/display/PRO14S/Monitor+Application+Change+Events
http://docs.appdynamics.com/display/PRO14S/Monitor+Application+Change+Events
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Administration
http://docs.appdynamics.com/display/PRO14S/Events
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Time+for+Java
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Time+for+Java

Copyright © AppDynamics 2012-2014 Page 330

Tutorial for Java - Flow Maps

Flow maps show the health of your application, all tiers, and the communication between the tiers.
It includes summary indicators such as call rates and error rates:

Visual indicators quickly show you problem tiers and healthy tiers. Below you can see tier 1 is
experiencing very slow response times, while tier 2 and tier 3 are healthy:

Copyright © AppDynamics 2012-2014 Page 331

By default, the flow map computes tier health by comparing the state of the tier averaged over the
last 15 minutes against the daily trend (the 30 day rolling average). You can change the time
window for baseline comparison using the time window pull down menu. You can also disable
baseline comparisons:

You can change the time range displayed in the flow map by changing the time window using the
time window pull down menu. Changing the time range effects the entire dashboard:

Copyright © AppDynamics 2012-2014 Page 332

You can troubleshoot a problem system call by clicking on a the tier's name to drill down into a
subset of the system involving the tier:

To view the slow response times in detail click on the slow response time menu:

Copyright © AppDynamics 2012-2014 Page 333

From the slow response time pick a transaction to see a snapshot of the slow transaction:

From the transaction snapshot you can troubleshoot the slow transaction:

Copyright © AppDynamics 2012-2014 Page 334

For more information on resolving issues related to slow transactions, see Troubleshoot Slow
.Response Time for Java

Tutorial for Java - Server Health
About Java Server Health
Learn More

About Java Server Health

By default, AppDynamics provides predefined rules for CPU utilization, physical memory
utilization, JVM heap utilization, and CLR heap utilization. For example the default health rule for
CPU utilization triggers a warning when a node exceeds 75% CPU utilization and triggers a critical
event when CPU utilization is 90% or above.

http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Time+for+Java
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Time+for+Java

Copyright © AppDynamics 2012-2014 Page 335

Node health is driven by node health rules. The following example shows that Node_8003 is
experiencing a JVM heap health rule violation; all of the heap is consumed.

You can view the health rule violation details and the status of the violation:

There are many types of health rules and each defines a condition or set of conditions in terms of
a certain set of metrics that serve as health indicators of your application component. For example,
the Business Transaction Performance health rule defines a set of conditions in terms of business
transaction metrics, while the Node Health-Hardware,JVM,CLR health rule defines a set of
conditions in terms of hardware metrics.

To change or add a new health rule, see .Configure Health Rules

http://docs.appdynamics.com/display/PRO14S/Configure+Health+Rules

Copyright © AppDynamics 2012-2014 Page 336

You can control the scope of a health rule to a specific application component. For example, for
Node Health, you can choose between scoping to tiers or nodes. For tiers, you can apply the
health rul to all tiers or to specific tiers only. For nodes, you can apply the health rule to all nodes.
If you have a large cluster, you can choose specific nodes as well.

Once you scope the health rule, you can define the triggering conditions of the health rule. There
are two status condition sets, warning and critical, which can be defined independently of each
other. Each status condition set consists of atomic conditions that must either be ALL met or have
ANY that are met in order to trigger the status condition. Atomic conditions are based on

Copyright © AppDynamics 2012-2014 Page 337

predefined metrics that serve as health indicators of your application component. If you cannot find
a Health Rule type that has a predefined metric that meets your needs, you can add a metric using

 or and use a Custom Health Rule.custom monitors create a JMX metric from MBeans

After defining Health Rules, you can use the Health Rule Violation Events in policies to trigger acti
 that can notify Administrators via email or SMS systems or perform some other action.ons

http://docs.appdynamics.com/display/PRO14S/Add+Metrics+Using+Custom+Monitors
http://docs.appdynamics.com/display/PRO14S/Add+Metrics+Using+Custom+Monitors
http://docs.appdynamics.com/display/PRO14S/Actions
http://docs.appdynamics.com/display/PRO14S/Actions

Copyright © AppDynamics 2012-2014 Page 338

Learn More

Troubleshooting Server Health, AppDynamics in Action video
Tutorial for Java - Transaction Scorecards

https://appdynamics-static.com/education/video/troubleshootingServerHealth/story.html
https://appdynamics-static.com/education/video/troubleshootingServerHealth/story.html

Copyright © AppDynamics 2012-2014 Page 339

Transactions are categorized as Normal, Slow, Very Slow, Stalled, or Errors, which are
determined by thresholds and the AppDynamics error detection subsystem. Thresholds can be
static or dynamic; dynamic thresholds are based on historical data. The Transaction Analysis
Histogram shows the distribution over time.

Copyright © AppDynamics 2012-2014 Page 340

Default Transaction Thresholds can be viewed here:

If you want to change the thresholds for all or individual transactions see the transaction threshold
policy configurations (see below). See .Thresholds

http://docs.appdynamics.com/display/PRO14S/Thresholds

Copyright © AppDynamics 2012-2014 Page 341

To troubleshoot slow transactions, see .Troubleshoot Slow Response Times for Java

By Default, errors are determined when HTTP Error Codes are returned and by default
AppDynamics instruments Java error and warning methods such as logger.warn and logger.error.
AppDynamics captures the exception stack trace and automatically correlates it with the request.
To learn how to change this, such as to reduce the number of errors reported by AppDynamics by
default or to add redirect error pages, see .Configure Error Detection

Troubleshooting Tutorials for Java

Tutorial for Java - Business Transaction Health Drilldown

Business Transaction Drilldown

Download MP4 version: BTHealthDrilldown.mp4
Download QuickTime version: BTHealthDrilldown.mov
Tutorial for Java - Exceptions

The Exceptions
Drill Down into the HTTP Error Code Exception
Drill Down into the AxisFault Exception
Drill Down into the Logger Exception
See How Exceptions are Configured
Learn More

The Exceptions

An exception is a code-logged message outside the context of a business transaction. Common
exceptions include code exceptions or logged errors, HTTP error codes, and error page redirects.

http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection
http://docs.appdynamics.com/download/attachments/20187332/BTHealthDrilldown.mp4?version=1&modificationDate=1394226197000&api=v2
http://docs.appdynamics.com/download/attachments/20187332/BTHealthDrilldown.mov?version=1&modificationDate=1394226197000&api=v2

Copyright © AppDynamics 2012-2014 Page 342

Exceptions display in the Exceptions pane of many dashboards.

Click Exceptions to quickly see a list, ordered by frequency.

Drill Down into the HTTP Error Code Exception

Notice the spike in the HTTP Error Codes graph, and that the "Page Not Found: 404 error" is the
most frequent.

To find out more about the 404 error, click the row.

Copyright © AppDynamics 2012-2014 Page 343

The list of URLs shows pages that have 404 errors. The memberLogOut and getAllItems URLs
have the most 404 errors. You can provide this information to the web team to determine why
those pages have so many 404 errors.

Drill Down into the AxisFault Exception

In the Exceptions tab, click the AxisFault row. A list of error snapshots shows the affected URL,
tier, and node.

Click a row and then click the Stack Traces for This Exception tab to drill down further. Then click
on one of the exceptions to see the stack trace.

Copyright © AppDynamics 2012-2014 Page 344

Share the stack trace with the development team to solve the problem.

Drill Down into the Logger Exception

In the Exceptions tab, click the Log4J Error Messages row. A list of error transaction snapshots
shows the affected URL, business transaction, tier, and node. You can see a graph of the
errors-per-minute data.

Click on a row to see the flow map for the error transaction snapshot.

Copyright © AppDynamics 2012-2014 Page 345

The icons for both tiers have a Drill Down button. Click the Drill Down button on Ecommerce tier; it
also says "Start", indicating that the transaction started on this tier.

The Call Drill Down shows the summary of the error message.

Copyright © AppDynamics 2012-2014 Page 346

You can use the Export to PDF button at the lower left to send this information to your colleagues.

Go back to the flow map and click the Inventory tier button. You see the Call DrillDrill Down
Down of the Inventory tier error message.

Compare the two error messages.

See How Exceptions are Configured

AppDynamics provides application-level default configurations for detecting exceptions. In the left
navigation pane click .Configure -> Instrumentation -> Error Detection

Copyright © AppDynamics 2012-2014 Page 347

Learn More

Troubleshoot Errors
Configure Error Detection

Tutorial for Java - Slow Transactions

To begin troubleshooting, click :Troubleshoot -> Slow Response Times

http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Errors
http://docs.appdynamics.com/display/PRO14S/Configure+Error+Detection

Copyright © AppDynamics 2012-2014 Page 348

To troubleshoot slow business transaction URLs, select the Slow Transactions tab and use the
Transaction Snapshots pane:

Once you select the URL you will see a visualization of the transaction. You can drill into a call
graph by clicking the drill-down icon.

Copyright © AppDynamics 2012-2014 Page 349

Once you are in the call graph you can look for methods that have a significant response time. For
example, the executeQuery method is responsible for 99% of response time:

From the page, you can also select the Slowest DB &Troubleshoot -> Slow Response Times
Remote Service Calls tab:

Copyright © AppDynamics 2012-2014 Page 350

You can drill into the transaction snapshots from this tab to see the snapshot view:

For more information on resolving issues related to slow transactions, see Troubleshoot Slow
.Response Times for Java

Tutorial for Java - Troubleshooting using Events

Troubleshooting with Events
How to Set up the Events List
How to Know Something is Not Quite Right
How to Investigate

Copyright © AppDynamics 2012-2014 Page 351

Investigating Errors
Investigating Stalled Business Transactions
Investigating Slow Business Transactions
Investigating Application Server Exceptions
Investigating Code Deadlocks
Investigating Application Change Events

Troubleshooting with Events

How to Set up the Events List

1. From the left navigation pane, click an application and then click .Events

2. In the window, use the filter criteria to pick which events you want to monitor. Click Events Sear
.ch

3. Set the time range.

4. Look for issues and anomalies.

How to Know Something is Not Quite Right

You see:

Red (critical, policy violation)
Purple (warning, stall)
Orange (warning, very slow)
Yellow (warning, slow)

How to Investigate

You drill down to the root cause of the problem in different ways depending on the type of event.

Investigating Errors

You can troubleshoot application issues by drilling down into errors.

1. In the window click an .Events Error

2. In the click the Drill Down icon. If there are multiple drill down icons,Transaction Flow Map
select the one with the transaction that takes the most time.

You can also access the window by clicking on the right side of theEvents Events
application dashboard.

Copyright © AppDynamics 2012-2014 Page 352

3. In the window click the tab.Call Drill Down Summary

4. Use the information to troubleshoot issues. This information can also be exported toSummary
PDF.

Investigating Stalled Business Transactions

You can troubleshoot business transactions by drilling down into stalled business transactions.

1. In the window click a row.Events Slow Requests - Stalled

Copyright © AppDynamics 2012-2014 Page 353

2. In the click the Drill Down icon.Transaction Flow Map

3. In the window click the tab.Call Drill Down Summary

4. Use the information to troubleshoot business transaction issues. This information canSummary
also be exported to PDF.

Investigating Slow Business Transactions

You can troubleshoot business transactions by drilling down into slow or very slow business
transactions.

1. In the window click a or row.Events Slow Requests - Very Slow Slow

Copyright © AppDynamics 2012-2014 Page 354

2. In the click the icon. If there are multiple drill down icons,Transaction Flow Map Drill Down
select the one with the transaction that takes the most time.

If there is more than one call from the originating Tier, you will see the window. InSelect a Call
this case, proceed to step 3. Otherwise, skip to step 4.

3. In the window click the slowest call.Select a Call

4. In the window click the tab to see the slowest methods.Call Drill Down Hot Spots

Copyright © AppDynamics 2012-2014 Page 355

5. In this example, since the slow call is a database call you know you can click the tabSQL Calls
to see the slowest SQL statement.

6. Use this information to diagnose transaction issues. This information can also be exported to
PDF.

Investigating Application Server Exceptions

You can troubleshoot application server issues by drilling down into application server exceptions.

1. In the window click an .Events Application Server Exception

2. In the window, click the tab.Application Server Exception Details

Copyright © AppDynamics 2012-2014 Page 356

3. Use this information to troubleshoot application server issues. Use the buttoCopy to Clipboard
n to save the exception details.

Investigating Code Deadlocks

You can troubleshoot code deadlocks by drilling down into a code deadlocks.

1. In the window click a .Events Code Deadlock

2. In the window click the tab.Code Deadlock Details

Copyright © AppDynamics 2012-2014 Page 357

3. Use this information to troubleshoot code deadlock issues. Use the buttonCopy to Clipboard
to save the deadlock details.

Investigating Application Change Events

You can view application changes by drilling down into application change events.

1. Click a change event to see a summary and details, for example:

2. Use this information to view application changes. Use the button to save theCopy to Clipboard
change details.

Administer App Agents for Java

Resolving Configuration Issues App Agent for Java
Resolving App Agent for Java Startup Issues

Locating the App Agent for Java Log Files
Resolving Incomplete Agent Configuration Issues
Unblocking the Controller Port
Correcting File Permission Issues

Learn More

This topic discusses techniques for finding and interpreting the information in the App Agent for
Java log files.

Resolving App Agent for Java Startup Issues

After sending a request to your web application, data should appear in the UI. If no data appears,
check the following:

1. You have re-started the application server.
2. Verify that the javaagent argument has been added to the startup script of your JVM.
3. Verify that you configured the agent-controller communication properties and agent identification
properties in the controller-info.xml file or as system properties in the startup script of your JVM.

By default AppDynamics reports events when applications are deployed, app servers are
restarted, and configuration parameters are changed. Since these are not problems, they
are indicated by a blue icon.

Copyright © AppDynamics 2012-2014 Page 358

See .App Agent for Java Configuration Properties
4. Check the Agent logs directory located at <Agent_Installation_Directory>/logs/<Node_Name>
for the agent.log file.
5. Verify that the Agent is compatible with the Controller. For details see Agent - Controller

.Compatibility Matrix

Locating the App Agent for Java Log Files

Agent log files are located in the <Agent_Installation_Directory>/logs/<Node_Name> folder.

The agent.log file is the recommended file to help you with troubleshooting. This log can indicate
the following:

Incomplete information in your Agent configuration.
The Controller port is blocked.
Incorrect file permissions.

Error messages related to starting the App Agent for Java use this format:

ERROR com.singularity.JavaAgent - Could Not Start Java Agent

Resolving Incomplete Agent Configuration Issues

The following table lists the typical error messages for incomplete Agent configuration:

Error Message Solution

Cannot connect to the Agent - ERROR
com.singularity.XMLConfigManager -
Incomplete Agent Identity data, Invalid
Controller Port Value []

This indicates that the value for the controller
port in controller-info.xml is missing.
Add the port value, along with the host value
(<your-host-name>), to fix this error.

For on-premise Controller installations:
Default port value is 8090 for HTTP and
8181 for HTTPS.
For Controller SaaS service: Default port
value is 80 for HTTP and 443 for HTTPS.

Caused by:
com.singularity.ee.agent.configuration.a:
Could not resolve agent-controller basic
configuration

This is usually caused because of incorrect
configuration in the Controller-info.xml file.
Ensure that the information for agent
communication (Controller host and port) and
agent identification (application, tier and node
names) is correctly configured.
Alternatively, you can also use the system
properties (-D options) or environment
variables to configure these settings.

For more information about agent properties see .App Agent for Java Configuration Properties

http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix
http://docs.appdynamics.com/display/PRO14S/Agent+-+Controller+Compatibility+Matrix

Copyright © AppDynamics 2012-2014 Page 359

Unblocking the Controller Port

The following table lists the typical error message when the Controller port is blocked in your
network:

Error Message Solution

ERROR
com.singularity.CONFIG.ConfigurationChannel
- Fatal transport error: Connection refused
WARN
com.singularity.CONFIG.ConfigurationChannel
- Could not connect to the controller/invalid
response from controller,
cannot get initialization information, controller
host \x.x.x.x\, port 8090, exception Fatal
transport error: Connection refused

Try to ping <your-host-name> from the
machine where you have configured the
Application Server Agent.
If it works, then confirm if the Controller port is
not blocked in your network.

 To check if a port was blocked in the
network; use command: fornetstat -an
Windows and nmap for Linux.

 * For on-premise Controller
 Default port value is 8090 forinstallations:

HTTP and 8181 for HTTPS.

For Controller SaaS service: Default port
value is 80 for HTTP and 443 for HTTPS.

Correcting File Permission Issues

Following table lists the typical error message when the file permissions are not correct:

Error Message Solution

ERROR com.singularity.JavaAgent - Could
Not Start Java Agent
com.singularity.ee.agent.appagent.kernel.spi.c
: Could not start services"

This is usually caused because of incorrect
permissions for log files.
Confirm if the user who is running the server,
has read and write permission on the agent
directories.
If the user has equivalentchmod a-r
permission, change the permission to chmod

 "<agent_directory>"a+r

Learn More

Install the App Agent for Java
App Agent for Java Configuration Properties

App Agent for Java Configuration Properties

Where to Configure App Agent Properties
Creating and Registering Tiers

Example Java App Agent controller-info.xml File
Example Startup-up Using System Properties
Java App Server Agent Properties

Agent-Controller Communication Properties
Controller Host Property

Copyright © AppDynamics 2012-2014 Page 360

Controller Port Property
SSL Configuration Properties

Controller SSL Enabled Property
Controller Keystore Password Property
Controller Keystore Filename Property
Force Default SSL Certificate Validation Property

Agent Identification Properties
Application Name Property
Tier Name Property
Node Name Property
Reuse Node Name Property
Reuse Node Name Prefix Property

Multi-Tenant Mode Properties
Account Name Property
Account Access Key Property

Proxy Properties for the Controller
Proxy Host Property
Proxy Port Property
Proxy User Name Property
Proxy Password Property

Other Properties
Enable Orchestration Property
Agent Runtime Directory Property
Redirect Logfiles Property
Force Agent Registration Property
Reuse Node Name Property
Auto Node Name Prefix Property
Cron/Batch JVM Property
Unique Host ID Property

Learn More

Where to Configure App Agent Properties

You can configure the App Server Agent properties:

in the controller-info.xml file in the <Agent_Installation_Directory>/conf directory

in the system properties (-D options) in the JVM startup script

The system properties override the settings in the controller-info.xml file.

For shared binaries among multiple JVM instances, AppDynamics recommends using a
combination of the xml file and the start-up properties to configure the app agent. Configure all the
properties common to all the JVMs in the controller-info.xml file. Configure the properties unique to
a JVM using the system properties in the start-up script.

For example:

For multiple JVMs belonging to the same application serving different tiers, configure the
application name in the controller-info.xml file and the tier name and node name using the
system properties.

For multiple JVMs belonging to the same application and the same tier, configure the

Copyright © AppDynamics 2012-2014 Page 361

application name and the tier name in the controller-info.xml file and the node name using
the system properties.

After you configure agent properties, confirm that the javaagent argument has been added to the
JVM startup script. For more information, see .Java Server-Specific Installation Settings

For some properties, you can use system properties already defined in the start-up script as the
App Server Agent property values. For more information, see Configure App Agent for Java to Use

.Existing System Properties

Creating and Registering Tiers

You can create a tier in the Controller prior to setting up any agents. Alternatively, an agent can
register its tier with the Controller the first time, and only the first time, that it connects with the
Controller. If a tier with the name used to connect already exists, the agent is associated with the
existing tier.

Example Java App Agent controller-info.xml File

<?xml version="1.0" encoding="UTF-8"?>
<controller-info>

 <controller-host>192.168.1.20</controller-host>

 <controller-port>8090</controller-port>

 <controller-ssl-enabled>false</controller-ssl-enabled>

 <application-name>ACMEOnline</application-name>

 <tier-name>InventoryTier</tier-name>

 <node-name>Inventory1</node-name>

 <agent-runtime-dir></agent-runtime-dir>

 <enable-orchestration>false</enable-orchestration>

 <account-name></account-name>
 <account-access-key></account-access-key>

 <force-agent-registration>false</force-agent-registration>

</controller-info>

Example Startup-up Using System Properties

The following command uses the system properties to start the agent that monitors the ACME
Online sample application's Inventory tier. Note that the system properties are case-sensitive.

Copyright © AppDynamics 2012-2014 Page 362

java -javaagent:/home/appdynamics/AppServerAgent/javaagent.jar
-Dappdynamics.controller.hostName=192.168.1.20
-Dappdynamics.controller.port=8090
-Dappdynamics.agent.applicationName=ACMEOnline
-Dappdynamics.agent.tierName=Inventory
-Dappdynamics.agent.nodeName=Inventory1 SampleApplication

Java App Server Agent Properties

This section describes the Java App Agent configuration properties, including their
controller-info.xml elements and their system property options.

Agent-Controller Communication Properties

Controller Host Property

Description: This is the host name or the IP address of the AppDynamics Controller. Example
values are 192.168.1.22 or myhost or myhost.abc.com. This is the same host that you use to
access the AppDynamics browser-based user interface. For an on-premise Controller, use the
value for Application Server Host Name that was configured when the Controller was installed. If
you are using the AppDynamics SaaS Controller service, see the Welcome email from
AppDynamics.

Element in controller-info.xml: <controller-host>

System Property: -Dappdynamics.controller.hostName

Type: String

Default: None

Required: Yes, if the Enable Orchestration property is false.

If Enable Orchestration is true, and if the app agent is deployed in a compute cloud instance
created by an AppDynamics workflow, do not set the Controller host unless you want to override
the auto-detected value. See .Enable Orchestration Property

Controller Port Property

Description: This is the HTTP(S) port of the AppDynamics Controller. This is the same port that
you use to access the AppDynamics browser-based user interface.

If the Controller SSL Enabled property is set to true, specify the HTTPS port of the Controller;
otherwise specify the HTTP port. See .Controller SSL Enabled Property

Element in controller-info.xml: <controller-port>

System Property: -Dappdynamics.controller.port

Type: Positive Integer

Default: For On-premise installations, port 8090 for HTTP and port 8181 for HTTPS are the
defaults.

Copyright © AppDynamics 2012-2014 Page 363

For the SaaS Controller Service, port 80 for HTTP and port 443 for HTTPS are the defaults.

Required: Yes, if the Enable Orchestration property is false.

If Enable Orchestration is true, and if the app agent is deployed in a compute cloud instance
created by an AppDynamics workflow, do not set the Controller port unless you want to override
the auto-detected value. See .Enable Orchestration Property

SSL Configuration Properties

Controller SSL Enabled Property

Description: When set to true, this property specifies that the agent should use SSL (HTTPS) to
connect to the Controller. If SSL Enabled is true, set the Controller Port property to the HTTPS
port of the Controller. See .Controller Port Property

Element in controller-info.xml: <controller-ssl-enabled>

System Property: -Dappdynamics.controller.ssl.enabled

Type: Boolean

Default: False

Required: No

Controller Keystore Password Property

Description: This is an encrypted value of the Controller certificate password. See Password
.Encryption Utility

Element in controller-info.xml: <controller-keystore-password>

System Property: Not applicable

Type: Boolean

Default: None

Required: No

Controller Keystore Filename Property

Description: By default the agent looks for a Java truststore file named cacerts.jks in the
configuration directory: <agent install directory>/conf. Use this property to enable full validation of
Controller SSL certificates with a different Java truststore file. See .Enable SSL for Java

Element in controller-info.xml: <controller-keystore-filename>

System Property: Not applicable

Type: String

Default: None

Required: No

Force Default SSL Certificate Validation Property

http://docs.appdynamics.com/display/PRO14S/Enable+SSL+for+Java#EnableSSLforJava-PasswordEncryptionUtility
http://docs.appdynamics.com/display/PRO14S/Enable+SSL+for+Java#EnableSSLforJava-PasswordEncryptionUtility

Copyright © AppDynamics 2012-2014 Page 364

Description: This property allows you to override the default behavior for SSL validation. The
property can have three states:

: Forces the agent to perform full validation of the certificate sent by the controller,true
enabling the agent to enforce the SSL trust chain. Use this setting when a public certificate
authority(CA) signs your Controller SSL certificate. See Enable SSL On-Premise with a

.Trusted CA Signed Certificate
: Forces the agent to perform minimal validation of the certificate. This propertyfalse

disables full validation of the Controller's SSL certificate. Use this setting when full validation
of a SaaS certificate fails.

: unspecified The validation performed by the agent depends on the context:

If the agent is connecting to a SaaS controller, full validation is performed.
If the agent is connecting to an on-premise controller, and the cacerts.jks file is
present, then full validation is performed using the cacerts.jks file.
If the agent is connecting to an on-premise controller, and there is no cacerts.jks file,
then minimal validation is performed

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.force.default.ssl.certificate.validation

Type: Boolean

Default: None

Required: No

Agent Identification Properties

Application Name Property

Description: This is the name of the logical business application that this JVM node belongs to.
Note that this is not the deployment name(ear/war/jar) on the application server.

If a business application of the configured name does not exist, it is created automatically.

Element in controller-info.xml: <application-name>

System Property: -Dappdynamics.agent.applicationName

Type: String

Default: None

Required: Yes

Tier Name Property

Description: This is the name of the logical tier that this JVM node belongs to. Note that this is
not the deployment name (ear/war/jar) on the application server.

If the JVM / AppServer start-up script already has a system property that references the tier, such
as -Dserver.tier, you could use ${server.tier} as the tier name. For more information, see Configure

.App Agent for Java to Use Existing System Properties

See .Name Business Applications, Tiers, and Nodes

http://docs.appdynamics.com/display/PRO14S/Enable+SSL+for+Java#EnableSSLforJava-On-PremisewithaTrustedCASignedCertificate
http://docs.appdynamics.com/display/PRO14S/Enable+SSL+for+Java#EnableSSLforJava-On-PremisewithaTrustedCASignedCertificate
http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes

Copyright © AppDynamics 2012-2014 Page 365

Element in controller-info.xml: <tier-name>

System Property: -Dappdynamics.agent.tierName

Type: String

Default: None

Required: Yes

Node Name Property

Description: This is the name of the JVM node.

Where JVMs are dynamically created, use the system property to set the node name.

If your JVM / AppServer start-up script already has a system property that can be used as a node
name, such as -Dserver.name, you could use ${server.name} as the node name. You could also
use expressions such as ${server.name}_${host.name}.MyNode to define the node name. See Co

 for more information.nfigure App Agent for Java to Use Existing System Properties

In general, the node name must be unique within the business application and physical host. If you
want to use the same node name for multiple nodes on the same physical machine, create
multiple virtual hosts using the Unique Host ID property. See .Unique Host ID Property

See .Name Business Applications, Tiers, and Nodes

Element in controller-info.xml: <node-name>

System Property: -Dappdynamics.agent.nodeName

Type: String

Default: None

Required: Yes

New

Reuse Node Name Property

Description: This system property enables the reuse of node names.

This property is useful in zOS Dynamic Workload Manager based-environments where new JVMs
are launched and shutdown based on actual work load. Appdynamics generates a node name with
App, Tier and Sequence number. The node names are pooled. For example, the sequence
numbers are reused when the nodes are purged (based on the node lifetime).

Use this option in environments where the node name can't be specified in the server startup
script, and therefore needs to be auto-generated. Every node creates its own metrics and the
names are pooled to make sure the Controller isn't overloaded with too many metric names. The
node name is generated by the Controller and sent back to the agent. The Controller recycles
node names based on the node retention period property.

Element in controller-info.xml: <node-name>

System Property: -Dappdynamics.agent.reuse.nodeName

Type: Boolean - valid values are "true" or "false"

http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes

Copyright © AppDynamics 2012-2014 Page 366

Default: String.

Required: No

Example: Using the following property specifications, the agent directs the Controller to generate
a node name with the prefix "reportGen". Node names will have suffixes --1, --2 etc. depending on
how many nodes are running in parallel. Later, the node names are reused by the controller.

-Dappdynamics.agent.reuse.nodeName=true
-Dappdynamics.agent.reuse.nodeName.prefix=reportGen

Reuse Node Name Prefix Property

Description: This property directs the Controller to generate node names dynamically with the
prefix specified.

System Property: -Dappdynamics.agent.reuse.nodeName.prefix

Element in controller-info.xml: <node-name>

Type: Boolean - valid values are "true" or "false"

Default: false, when set so "true", you do not need to specify a node name.

Required: No

Example: Using the following property specifications, the agent directs the Controller to generate
a node name with the prefix "reportGen". Node names will have suffixes --1, --2 etc. depending on
how many nodes are running in parallel. Later, the node names are reused by the controller.

-Dappdynamics.agent.reuse.nodeName=true
-Dappdynamics.agent.reuse.nodeName.prefix=reportGen

Multi-Tenant Mode Properties

Description: If the AppDynamics Controller is running in multi-tenant mode or if you are using the
AppDynamics SaaS Controller, specify the account name and account access key for this agent to
authenticate with the Controller. If you are using the AppDynamics SaaS Controller, the account
name is provided in the Welcome email sent by AppDynamics. You can also find this information
in the <controller-install>/initial_account_access_info.txt file.

If the Controller is running in single-tenant mode (the default) there is no need to configure these
values.

Account Name Property

Description: This is the account name used to authenticate with the Controller.

Element in controller-info.xml: <account-name>

System Properties: -Dappdynamics.agent.accountName

Type: String

Default: None

Required: Yes for AppDynamics SaaS Controller and other multi-tenant users; no for
single-tenant users.

Copyright © AppDynamics 2012-2014 Page 367

Account Access Key Property

Description: This is the account access key used to authenticate with the Controller.

Element in controller-info.xml: <account-access-key>

System Properties: -Dappdynamics.agent.accountAccessKey

Type: String

Default: None

Required: Yes for AppDynamics SaaS Controller and other multi-tenant users; no for
single-tenant users.

Proxy Properties for the Controller

These properties route data to the Controller through a proxy.

Proxy Host Property

Description: This is the proxy host name or IP address.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.http.proxyHost

Type: String

Default: None

Required: No

Proxy Port Property

Description: This is the proxy HTTP(S) port.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.http.proxyPort

Type: Positive Integer

Default: None

Required: No

Proxy User Name Property

Description: This is the name of the user that is authenticated by the proxy host.New for 3.8.1

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.http.proxyUser

Type: String

Proxy authentication cannot be used in conjunction with SSL.

Copyright © AppDynamics 2012-2014 Page 368

Default: None

Required: No

Proxy Password Property

Description: This is the absolute path to the file containing the password of theNew for 3.8.1
user that is authenticated by the proxy host. The password must be the first line of the file and
must be in clear, unencrypted text.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.http.proxyPasswordFile

Type: String

Default: None

Required: No

Example: -Dappdynamics.http.proxyPasswordFile=/path/to/file-with-first-line-containing-password-
in-clear-text

Other Properties

Enable Orchestration Property

Description: When set to true, enables auto-detection of the controller host and port when the
app server is a compute cloud instance created by an AppDynamics orchestration workflow. See

 and .Controller Host Property Controller Port Property

In a cloud compute environment, auto-detection is necessary for the Create Machine tasks in the
workflow to run correctly.

If the host machine on which this agent resides is not created through AppDynamics workflow
orchestration, this property should be set to false.

Element in controller-info.xml: <enable-orchestration>

System Property: Not applicable

Type: Boolean

Default: False

Required: No

Agent Runtime Directory Property

Description: This property sets the runtime directory for all runtime files (logs, transaction
configuration) for nodes that use this agent installation. If this property is specified, all agent logs
are written to <Agent-Runtime-Directory>/logs/node-name and transaction configuration is written
to the <Agent-Runtime-Directory>/conf/node-name directory.

Element in controller-info.xml: <agent-runtime-dir>

System Property: -Dappdynamics.agent.runtime.dir

Type: String

Copyright © AppDynamics 2012-2014 Page 369

Default: <Agent_Installation_Directory>/nodes

Required: No

Redirect Logfiles Property

Description: This property sets the destination directory to which to redirect log files for a node.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.agent.logs.dir

Type: String

Default: <Agent_Installation_Directory>/logs/<Node_Name>

Required: No

Force Agent Registration Property

Description: Set to true only under the following conditions:

The Agent has been moved to a new application and/or tier from the UI
and
You want to override that move by specifying a new application name and/or tier name in
the agent configuration.

Element in controller-info.xml: <force-agent-registration>

System Property: Not applicable

Type: Boolean

Default: False

Required: No

Reuse Node Name Property

Description: Set this property if you want the Controller to generate unique node names
automatically using a prefix.

You can specify the prefix in the . If you do not provide a prefixAuto Node Name Prefix Property
but set the reuse.nodeName property to true, the Controller uses the tier name as a prefix.

This property is useful for dynamic multi-tier clustered applications with many JVMs that have
short life spans. It allows AppDynamics to reuse node names and to capture historical data for
these short-lived nodes after they become historical or are deleted.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.agent.reuse.nodeName

Type: Boolean

Default: None

Required: No

Copyright © AppDynamics 2012-2014 Page 370

Auto Node Name Prefix Property

Description: Set this property if you want the Controller to generate node names automatically
using a prefix that you provide.

The Controller generates node names based on the prefix concatenated with a number, which is
incremented sequentially. For example, if you assign a value of "mynode" to this property, the
Controller generates node names "mynode-1", "mynode-2" and so on.

If one of the nodes is deleted and the is true, the Controller will re-useReuse Node Name Property
the deleted node name.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.agent.auto.node.prefix=<your_prefix>

Type: String

Default: Serial number maintained by the Controller appended to the tier name

Required: No

Cron/Batch JVM Property

Description: Set this property to true if the JVM is a batch/cron process or if you are
instrumenting the main() method. This property can be used to stall the shutdown to allow the
agent to send metrics before shutdown.

Element in controller-info.xml: Not applicable

System Property: -Dappdynamics.cron.vm

Type: Boolean

Default: False

Required: No

Unique Host ID Property

Description: UniqueHostId logically partitions a single physical host or virtual machine such that
it appears to the Controller that the application is running on different machines. Set the value to a
string that is unique across the entire managed infrastructure. The string may not contain any
spaces. If this property is set on the app agent, it must be set on the machine agent as well.

See .Configure Multiple Standalone Machine Agents for One Machine for Java

System Property: -Dappdynamics.agent.uniqueHostId

Type: String

Default: None

Required: No

Learn More

Name Business Applications, Tiers, and Nodes

http://docs.appdynamics.com/display/PRO14S/Configure+Multiple+Standalone+Machine+Agents+for+One+Machine+for+Java
http://docs.appdynamics.com/display/PRO14S/Name+Business+Applications%2C+Tiers%2C+and+Nodes

Copyright © AppDynamics 2012-2014 Page 371

Configure App Agent for Java for JVMs that are Dynamically Identified
Configure App Agent for Java to Use Existing System Properties
Java Agent on z-OS or Mainframe Environments Configuration

Configure and Start an Agent Logging Session

1. In the tab of the node dashboard, scroll down to the Agent Logs panel.Agents

2. Click .Start Agent Logging Session

The Agent Logging Session window opens.

3. From the drop-down menu select the duration for which you want to log.

4. Check the check boxes for the types of requests that you want to log.

5. Click .Start Agent Logging Session

The selected logging sessions appear in the logging list.

The logged request and response output appears in the Controller and the agent log.

http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+on+z-OS+or+Mainframe+Environments+Configuration

Copyright © AppDynamics 2012-2014 Page 372

For more information, see .Request Agent Log Files

Configure App Agent for Java in z-OS or Mainframe Environments
To name nodes automatically
Learn More

In some environments JVMs have transient identity, such as when a single script spawns multiple
JVMs.

For example, an environment may consist of WebSphere on IBM Mainframes, using a dynamic
workload management feature that spawns new JVMs for an existing application server (called a
servant). These JVMs are exact clones of an existing JVM, but each of them has a different
process ID. Based on load, any number of additional JVMs may be created.

To name nodes automatically

The App Server Agent can automatically name the dynamically generated JVMs using the
appdynamics.agent.reuse.nodeName property. See to enable re-useReuse Node Name Property
of node names and to set the prefix used forAuto Node Name Prefix Property
automatically-named nodes. You specify these properties in your startup script, using the following
format:

-Dappdynamics.agent.reuse.nodeName=true
-Dappdynamics.agent.reuse.nodeName.prefix=<node name prefix>

http://docs.appdynamics.com/display/PRO14S/Request+Agent+Log+Files
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ReuseNodeNameProperty
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-AutoNodeNamePrefixProperty

Copyright © AppDynamics 2012-2014 Page 373

If you are using these properties, ensure that you have not specified the node name anywhere
(controller-info.xml file or as a system property) in your JVMs start-up script.

The following illustration shows the sample configuration for ACME Bookstore. This configuration
will create unique node names for every instance of the virtual machine starting up in the ACME
Bookstore environment.

The name of a node is available for reuse if the node has been out of contact with the Controller
for a period of time that exceeds the node retention setting. For more about historical nodes, node
retention and deletion, see .Remove Unused Nodes

Learn More

App Agent for Java Configuration Properties
Remove Unused Nodes

App Agent for Java Performance Tuning
Business Transaction Thresholds
Snapshot Collection Thresholds

Disable Scheduled Snapshots
Suggested Scheduling Settings
Suggested Diagnostic Session Settings

Tuning Call Graph Settings
Suggested SQL Query Time and Parameters

Memory Monitoring

http://docs.appdynamics.com/display/PRO14S/Remove+Unused+Nodes
http://docs.appdynamics.com/display/PRO14S/Remove+Unused+Nodes

Copyright © AppDynamics 2012-2014 Page 374

Learn More

This topic discusses how to get the best performance from App Agents for Java.

Business Transaction Thresholds

AppDynamics determines whether transactions are slow, very slow, or stalled based on the
thresholds for Business Transactions. AppDynamics recommends using standard deviation based
dynamic thresholds. See .Configure Thresholds

Snapshot Collection Thresholds

Snapshot collection thresholds determine when snapshots are collected for a Business
Transaction. Too many snapshots can affect performance and therefore snapshot collection
thresholds should be considered carefully in production or load testing scenarios. See Configure

.Thresholds

Disable Scheduled Snapshots

For more information see .Transaction Snapshots

Suggested Scheduling Settings

10 minutes for small deployments < 10 BTs

20 minutes for medium deployments < 10 - 50 BTs

30 minutes for > 50 - 100 BTs

60 minutes > 100 BTs

Suggested Diagnostic Session Settings

Settings for Slow requests (%value): 20 - 30

Settings for Error requests (%value): 10 - 20

Click .Apply to all Business Transactions

Tuning Call Graph Settings

To configure call graph settings, click and the Configure -> Instrumentation Call Graph Settings
tab. See .Configure Call Graphs

Suggested SQL Query Time and Parameters

Minimum SQL Query Time : 100 ms (Default is 10)

Enable .Filter SQL Parameter Values

Memory Monitoring

Memory monitoring features such as leak detection, object instance tracking, and custom memory
should be enabled only for a specific node or nodes when debugging a memory problem.
Automatic leak detection is on-demand, and therefore, the leak detection will execute only for the

http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots
http://docs.appdynamics.com/display/PRO14S/Configure+Call+Graphs

Copyright © AppDynamics 2012-2014 Page 375

specified duration.

When you observe periods of growth in the heap utilization (%), you should enable on-demand
memory leak capture. See .Troubleshoot Java Memory Leaks

Learn More

Configure Thresholds
Configure Call Graphs
Troubleshoot Java Memory Leaks

Move an App Agent for Java Node to a New Application or Tier

Moving a Node to a New Application or Tier
To change the Java Agent associations from the UI

Optionally update the controller-info.xml file
Forcing node re-registration using the controller-info.xml file

Learn More

If your JVM machine has both an App Agent for Java and a Machine Agent, you cannot change
the associations in the Machine Agent controller-info.xml file. You can only change these
associations either through the UI or by modifying the App Agent for Java controller-info.xml file.

Moving a Node to a New Application or Tier

You can assign an App Agent for Java node to a new application or tier using the AppDynamics UI
without restarting the JVM.

You can optionally update the controller-info.xml file and restart the JVM. You must restart the
JVM when you change the associations in the controller-info.xml file.

Moving the node using the AppDynamics UI cannot be overridden by an agent configuration
unless you set the force-agent-registration flag to true in the controller-info.xml file.

To change the Java Agent associations from the UI

1. Select the node that you want to move by clicking Servers -> App Servers -> <Tier>
.-><Node>

2. Click .Actions -> Move Node

4. In the Move Node window select the new application and/or tier from the drop-down menus.

5. Click to confirm the reassignment. It may take several minutes to complete.OK

http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Call+Graphs

Copyright © AppDynamics 2012-2014 Page 376

 When you change the associations for an App Agent for Java, AppDynamics registers an
Application Changes event. You can review the details of the event in the view.Events

Optionally update the controller-info.xml file

The UI does not update the controller-info.xml file. However if you restart the JVM the Controller
will remember and keep the change you made from the UI.

You may want to maintain consistency with the controller-info.xml file, just for neatness' sake.
Perform these two additional steps:

6. Update these configuration changes in the App Agent for Java controller-info.xml file.

7. Restart the JVM.

If it is not feasible to restart the JVM at this time, remember the change and update the file the
next time you restart the JVM.

Forcing node re-registration using the controller-info.xml file

If you've moved a node in the UI and you want to move it again elsewhere using
controller-info.xml, then when you restart the JVM you set the force-agent-registration property to
'true'. See .Force Agent Registration Property

Learn More

Logical Model

App Agent for Java Diagnostic Data
To view agent diagnostic data
To view agent diagnostic stats
Learn More

To view agent diagnostic data

1. From an Application Dashboard, click .Actions -> View Agent Diagnostics

The Agent Diagnostic Data window opens and displays various metrics related to the application,
tiers, and nodes.

http://docs.appdynamics.com/display/PRO14S/Events
http://docs.appdynamics.com/display/PRO14S/App+Agent+for+Java+Configuration+Properties#AppAgentforJavaConfigurationProperties-ForceAgentRegistrationProperty
http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 377

2. Select a node and click .View Agent Diagnostic Events for selected Node

The Agent Diagnostics Event window opens.

To view agent diagnostic stats

1. From the left navigation pane, click *Servers -> App Servers -> <Tier> -> <Node>.

2. In the Node Dashboard, click the Agents tab.

3. Click the Agent Diagnostic Stats subtab.

Copyright © AppDynamics 2012-2014 Page 378

Learn More

Troubleshoot Node Problems

App Agent for Java Directory Structure
App Agent for Java Directory Structure
The conf Directory

App Agent for Java Directory Structure

The AppServerAgent.zip folder contains files for installing the App Agent for Java.

The directory structure for the agent is illustrated in the following screen shot.

lib: The lib folder has the core agent libraries and the third-party libraries.
conf: The conf folder is the configuration directory that has local configuration backup.
sdk: This folder contains the Javadocs and APIs to extend AppDynamics' monitoring
capabilities.

http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Node+Problems

Copyright © AppDynamics 2012-2014 Page 379

javaagent.jar: This JAR file has the argument to bootstrap the App Agent for Java. To
enable the agent, the --javaagent argument for JVM startup is required. See Install the App

.Agent for Java
logs: All logs written by the agent in this directory.

The conf Directory

The files located in this directory are commonly used for agent configuration and deployment.

transactions.xml: This XML file has configurations for business transaction identified by the
agent.

controller-info.xml: This XML file has controller connectivity and identification.

The following agent settings are configured using this XML file:

Agent communication settings (specified using <controller-host> and <controller-port>
properties).

Agent identification settings (specified using <application-name>, <tier-name>, and
<node-name> properties).

app-agent-config.xml: This XML file contains agent configuration. Any changes to the
agent's local settings are specified in this file, and these changes override the global
configuration. This file is typically used for short-term properties settings or for debugging
agent issues.

jmx: The jmx folder contains files for configuring the JMX and Websphere PMI metrics.

logging/log4j.xml: This file contains flags to control logging levels for the agent. It is highly
recommended not to change the default logging levels.

To specify a different log directory, use the following system property:

-Dappdynamics.agent.logs.dir

IBM App Agent for Java
Supported JVMs

Copyright © AppDynamics 2012-2014 Page 380

Instrumenting the IBM App Agent for Java
Running the App Agent for Java in a WebSphere/InfoSphere Environment with WebLogic
Security Enabled

Under most circumstances, the IBM App Agent for Java works the same as the App Agent for
Java.
This topic gathers information specific to the IBM App Agent for Java.

Supported JVMs

IBM JVM 1.5.x, 1.6.x

Instrumenting the IBM App Agent for Java

To change instrumentation for the IBM App Agent for Java, the IBM JVM must be restarted. By
default the IBM App Agent for Java does not apply BCI changes without restarting the JVM. This is
because in the IBM VM (J9 1.6.0) the implementation of re-transformation affects performance
(changes the JIT behavior such that less optimization occurs).

The following changes require that you restart the IBM JVM.

Automatic leak detection
Custom memory structures
Information points
Aggressive snapshot policy (also called hotspot instrumentation)
Custom POJO rules for transaction detection
Custom exit point rules
End user experience monitor (EUM), when you enable it and/or disable it after first enabling
it

Running the App Agent for Java in a WebSphere/InfoSphere Environment with WebLogic Security Enabled

If your WebSphere/InfoSphere environment includes a security-enabled WebLogic Application
Server, several InfoSphere Master Data Management (MDM) Server clients require security
configuration.

For more information, see Configuring Java clients to work with WebLogic security in the IBM
.documentation

Configure App Agent for Java for Batch Processes
To configure the App Agent for Java
To use the script name as the node name

Learn More

You can configure the App Agent for Java for those JVMs that run as cron or batch jobs where the
JVM runs only for the duration of the job. AppDynamics monitors the main method of the Java
program.

To configure the App Agent for Java

1. Add the application and tier name to the controller-info.xml file.

2. Add the appdynamics.cron.vm property to the AppDynamics javaagent command in the startup
script of your JVM process:

http://publib.boulder.ibm.com/infocenter/mdm/v8r0m0/index.jsp?topic=/com.ibm.mdmhs.instl.gd.doc/mdminstallationguide25.htm
http://publib.boulder.ibm.com/infocenter/mdm/v8r0m0/index.jsp?topic=/com.ibm.mdmhs.instl.gd.doc/mdminstallationguide25.htm

Copyright © AppDynamics 2012-2014 Page 381

-javaagent:<agent_install_dir>/javaagent.jar
-Dappdynamics.agent.nodeName=${NODE_NAME} -Dappdynamics.cron.vm=true

The agent_install_dir is the full path of the App Agent for Java installation directory.

The appdynamics.cron.vm property creates a delay between the end of the main method and the
JMV exit so that the Agent has time to upload metrics to the Controller.

To use the script name as the node name

You can use the script name that executes the cron or batch job as the node name.

The following commands set the value of variable NODE_NAME using the combination of the
script and host name. Add these commands to the startup script of the JVM.

Use the name of the script (no path, no extension) as the name of the node.
NODE_NAME=sample
NODE_NAME="${NODE_NAME%%.}"
echo $NODE_NAME
Localize the script to the host.
NODE_NAME="$NODE_NAME@$HOSTNAME"

The following illustration shows the sample configuration for controller-info.xml and the startup
script of the JVM.

Copyright © AppDynamics 2012-2014 Page 382

Learn More

Configure Background Tasks for Java

Configure App Agent for Java in Restricted Environments
To write the "startup hook" agent program

Some restricted environments do not allow any changes to the JVM startup script. For these
environments AppDynamics provides the appdynamics.agent.startup.hook property. This "startup
hook" allows a single point of deployment for the agent. You create a Java main method that is
invoked programmatically, before your startup script is executed.

To write the "startup hook" agent program

1. Implement a class with Java main method.

2. Create a JAR file for this class.

3. In the manifest of the JAR file, specify the class created in step 1.

4. Add the following javaagent argument and system properties (-D options) to your startup script:

Copyright © AppDynamics 2012-2014 Page 383

-javaagent:<agent_install_dir>/javaagent.jar
-Dappdynamics.agent.startup.hook=<JAR-file>

Configure App Agent for Java on Multiple JVMs on the Same Machine that
Serve Different Tiers

To configure the App Agent for Java

This section describes how you can configure the App Agent for Java for multiple JVMs that are
located on a single machine and are serving two tiers.

For example, the ACME Bookstore has two JVMs on the same physical server. These two JVMs
are bound to two different virtual IP (one JVM is used for Order Processing Services and the other
JVM is used for Inventory Services).

For such cases, follow these rules:

All of the common information should be configured using controller-info.xml file.

All of the information unique to a JVM should be configured using the system properties in
the JVM startup script.

Information in the startup scripts always overrides the information in the controller-info.xml
file.

To configure the App Agent for Java

1. Add to file.application name controller-info.xml

2. Add argument and following system properties (-D options) to the start-up script tojavaagent
each of your JVM:

Copyright © AppDynamics 2012-2014 Page 384

java -javaagent:<Agent-Installation-Directory>/javaagent.jar
-Dappdynamics.agent.tierName=$tierName -Dappdynamics.agent.nodeName=$nodeName

Separate the system properties with a white space character.

All agents in shared mode need a unique node name so that they can be differentiated from one
another. See .Configure App Agent for Java to Use Existing System Properties

The following illustration displays how this configuration is applied to ACME Bookstore:

 Tips:

The application and tier names can also be configured using the system properties. For
more details see .App Agent for Java Configuration Properties

Some application server management consoles allow you to specify startup arguments
using a web interface. See .Java Server-Specific Installation Settings

Configure App Agent for Java on Multiple JVMs on the Same Machine that
Serves the Same Tier

To configure the App Agent for Java properties

Copyright © AppDynamics 2012-2014 Page 385

This topic describes how to configure the App Agent for Java for multiple JVMs that are located on
a single machine and are serving the same tier.

For example, ACME Bookstore has a physical server with five JVMs installed on it. All of these
JVMs are used for the Inventory Services.

For such cases, follow these rules:

All of the common information should be configured using controller-info.xml.

All of the information unique to a JVM should be configured using the system properties in
the start-up script.

Information in the startup scripts always overrides the information in the controller-info.xml
file.

To configure the App Agent for Java properties

1. Provide the application and tier name in the controller-info.xml file.

2. Add the javaagent argument and system property (-D option) for the node name to the batch file
or startup script of each JVM.

java -javaagent:<Agent-Installation-Directory>/javaagent.jar
-Dappdynamics.agent.nodeName=$nodeName

Separate the system properties with a white space character.

The following illustration displays how this configuration is applied to the ACME Bookstore.

Copyright © AppDynamics 2012-2014 Page 386

The application and tier names can also be configured using the system properties. See App
.Agent for Java Configuration Properties

Some application server management consoles allow you to specify start-up arguments using a
web interface. See .Java Server-Specific Installation Settings

Configure App Agent for Java to Use Existing System Properties

System Properties
Using System Properties

To identify nodes
To identify tiers

Sample Agent Configuration Using System Properties
Learn More

This topic explains how to configure the App Agent for Java using the existing system property
values.

System Properties

AppDynamics recommends that you use the existing system properties to configure the Agent
when your environment consists of multiple JVMs on the same machine. Once you have these

Copyright © AppDynamics 2012-2014 Page 387

variables configured, you can complete Agent installation for all JVMs by simply adding the
javaagent argument to each JVM startup script. Then add the rest of the information to the
controller-info.xml file.

AppDynamics recommends that you use the system properties if the same startup script is starting
all the JVMs in your environment.

You can identify the node name based on the value of -Dserver.name and the tier name based on
the value of -Dcluster.name.

Also, you can combine two or more system properties to identify the node or tier name. You can
use -Dhost.name and -Dserver.name to identify similarly named nodes on different machines even
when they belong to the same tier.

You can use existing system properties for the controller host and port, however combining is not
supported in this case.

Using System Properties

Use the following syntax to represent the value of the system property in the controller-info.xml file.

${system property name}

You can combine multiple system properties.

${host.name}${server.name}

You can combine system properties with literals. In the following example '_' and 'inventory' are
literals.

${host.name}_${server.name}.inventory

To identify nodes

${host.name}

or

${server.name}

or

${host.name}${server.name}

To identify tiers

Copyright © AppDynamics 2012-2014 Page 388

${cluster.name}

Sample Agent Configuration Using System Properties

Consider a JVM with a script file named startserver.sh. This script file has following system
property:

-Dserver.name=$1

If you execute:

startserver.sh ecommerce01

The script creates a new server named ecommerce01.

To use this system property for Agent configuration, add the appdynamics.agent.nodeName
property to startserver.sh file.

-Dappdynamics.agent.nodeName=$server.name

When the script creates the new server named ecommerce01, it will be identified by AppDynamics
as both a server and as a node.

The following screenshot shows a sample configuration for the controller-info.xml file and the
startup script.

Copyright © AppDynamics 2012-2014 Page 389

Learn More

Logical Model
Install the App Agent for Java

Administer App Agent for Java FAQ
App Agent for Java Administration FAQ

Q. Why am I seeing "WARN AsyncHandOffIdentificationInterceptor - Reached
maximum limit 500 of async handoff call graph samples. No more samples will be
taken" message in the agent log files?

App Agent for Java Administration FAQ

Q. Why am I seeing "WARN AsyncHandOffIdentificationInterceptor - Reached maximum limit 500 of async
handoff call graph samples. No more samples will be taken" message in the agent log files?

In AppDynamics 3.6 and 3.7, all Runnables, Callables and Threads are instrumented by default
except for the ones that are excluded by the agent configuration in app-agent-config.xml. In some
environments, this could result in too many classes being instrumented, or cause common classes
in a framework that implements the Runnable interface to be mistaken for asynchronous activity
when it is not, for example Groovy application using Closures.

http://docs.appdynamics.com/display/PRO14S/Logical+Model

Copyright © AppDynamics 2012-2014 Page 390

To debug the cause of the message, check the call graph to see if so many asynchronous
activities are legitimate. If they are not, then exclude the packages that are not really
asynchronous activities. See .Configure Multi-Threaded Transactions for Java

Configure App Agent for Java for JVMs that are Dynamically Identified
To configure the node name of the App Agent for Java
Configuration notes

This topic describes how to configure the App Agent for Java in environments where the JVMs are
dynamic.

To configure the node name of the App Agent for Java

1. Add the and to the controller-info.xml file.application tier name

2. Add the javaagent argument and the following system properties (-D options) to the startup
script of the JVMs:

java -javaagent:<agent-install-dir>/javaagent.jar
-Dappdynamics.agent.nodeName=${NODE_NAME}

Configuration notes

The system properties are separated by a white space character.

The <agent-install-dir> references the full path of the App Agent for Java installation directory.

The token ${NODE_NAME} identifies the JVMs dynamically and names these JVMs based on the
parameter value passed during the execution of the startup script for your JVM process.

The application and tier names can also be configured using the system properties. For example,
you can configure the agent to direct the Controller to create node names using a prefix and to
reuse node names so the Controller is not overloaded, using the -Dappdynamics.agent.reus

 and options respectively.e.nodeName.prefix =Dappdynamics.agent.reuse.nodeName
For more details see .App Agent for Java Configuration Properties

Some application server management consoles allow you to specify startup arguments using a
web interface.
For details see .Java Server-Specific Installation Settings

Add the Agent into an Embedded JVM

In order to add the agent into an embedded JVM you must first identify the java process in which
you want to embed the agent and then apply the agent to that java process.

1. From the command line, use the JPS tool to list the process id and the fully-qualified java main
class, as follows:

C:\>jps -l

The system returns information such as,

Copyright © AppDynamics 2012-2014 Page 391

2160 sun.tools.jps.Jps
2020 org.apache.catalina.startup.Bootstrap

2. Apply the agent to the relevant process id as follows:

C:\>java -jar javaagent.jar <java>process_id>

Note: Ensure the AppDynamics Pro Controller has all the required information for the JVM,
including controller-host, port, tier, and node name.

	AppDynamics for Java
	Supported Environments and Versions for Java
	Install the App Agent for Java
	Multi-Agent Deployment for Java
	Java Server-Specific Installation Settings
	Apache Cassandra Startup Settings
	Apache Tomcat Startup Settings
	Tomcat as a Windows Service Configuration

	Coherence Startup Settings
	GlassFish Startup Settings
	IBM WebSphere and InfoSphere Startup Settings
	JBoss Startup Settings
	Jetty Startup Settings
	Mule ESB Startup Settings
	Oracle WebLogic Startup Settings
	OSGi Infrastructure Configuration
	Resin Startup Settings
	Solr Startup Settings
	Standalone JVM Startup Settings
	Tanuki Service Wrapper Configuration
	Tibco ActiveMatrix BusinessWorks Service Engine Configuration
	SUN JDK 1.6 on Linux

	Enable SSL for Java
	Upgrade the App Agent for Java
	Uninstall the App Agent for Java

	Configure AppDynamics for Java
	Business Transaction Configuration Methodology for Java
	Java Web Application Entry Points
	Servlet Entry Points
	Automatic Naming Configurations for Servlet-Based Business Transactions
	Custom Naming Configurations for Servlet-Based Business Transactions
	Custom Expressions for Naming Business Transactions
	Advanced Servlet Transaction Detection Scenarios
	Identify Transactions Based on DOM Parsing Incoming XML Payload
	Identify Transactions Based on POJO Method Invoked by a Servlet
	Identify Transactions for Java XML Binding Frameworks
	Identify Transactions Based on JSON Payload
	Identify Transactions Based on URL Segment and HTTP Parameter
	Identify Transactions for Grails Applications
	Identify Transactions Based on Web Services
	Identify Transactions Based on the JSP Name

	Struts Entry Points
	Web Service Entry Points
	POJO Entry Points
	Spring Bean Entry Points
	EJB Entry Points
	JMS Entry Points
	Binary Remoting Entry Points for Apache Thrift
	CometD Support
	Mule ESB Support
	JAX-RS Support
	Spring Integration Support
	Instrumenting Apple WebObjects Applications

	Exclude Rule Examples for Java
	Configure Multi-Threaded Transactions for Java
	Configure End-to-End Message Transactions for Java

	Configure Backend Detection for Java
	Configure Custom Exit Points for Java
	Configurations for Custom Exit Points for Java
	HTTP Exit Points for Java
	JDBC Exit Points for Java
	Message Queue Exit Points for Java
	Web Services Exit Points for Java
	Cassandra Exit Points for Java
	RMI Exit Points for Java
	Thrift Exit Points for Java

	Configure Memory Monitoring for Java
	Configure Automatic Leak Detection for Java
	Configure and Use Object Instance Tracking for Java
	Configure and Use Custom Memory Structures for Java

	Configure Background Tasks for Java
	Import and Export Transaction Detection Configuration for Java
	Getter Chains in Java Configurations
	Code Metric Information Points for Java
	Configure JMX Metrics from MBeans
	Create, Import or Export JMX Metric Configurations
	Exclude JMX Metrics
	Exclude MBean Attributes
	Configure JMX Without Transaction Monitoring
	Resolve JMX Configuration Issues
	MBean Getter Chains and Support for Boolean and String Attributes

	Percentile Metrics

	Monitor Java Applications
	Monitor JVMs
	JVM Crash Guard

	Monitor Java App Servers
	Monitor JMX MBeans

	Trace MultiThreaded Transactions for Java
	Service Endpoint Monitoring
	Monitoring in a Development Environment

	Troubleshoot Java Application Problems
	Troubleshoot Slow Response Times for Java
	Configure Diagnostic Sessions For Asynchronous Activity
	Troubleshoot Java Memory Issues
	Troubleshoot Java Memory Leaks
	Troubleshoot Java Memory Thrash

	Detect Code Deadlocks for Java

	Tutorials for Java
	Overview Tutorials for Java
	Use AppDynamics for the First Time with Java

	Monitoring Tutorials for Java
	Tutorial for Java - Events
	Tutorial for Java - Flow Maps
	Tutorial for Java - Server Health
	Tutorial for Java - Transaction Scorecards

	Troubleshooting Tutorials for Java
	Tutorial for Java - Business Transaction Health Drilldown
	Tutorial for Java - Exceptions
	Tutorial for Java - Slow Transactions
	Tutorial for Java - Troubleshooting using Events

	Administer App Agents for Java
	Resolving Configuration Issues App Agent for Java
	App Agent for Java Configuration Properties
	Configure and Start an Agent Logging Session
	Configure App Agent for Java in z-OS or Mainframe Environments
	App Agent for Java Performance Tuning
	Move an App Agent for Java Node to a New Application or Tier
	App Agent for Java Diagnostic Data
	App Agent for Java Directory Structure
	IBM App Agent for Java
	Configure App Agent for Java for Batch Processes
	Configure App Agent for Java in Restricted Environments
	Configure App Agent for Java on Multiple JVMs on the Same Machine that Serve Different Tiers
	Configure App Agent for Java on Multiple JVMs on the Same Machine that Serves the Same Tier
	Configure App Agent for Java to Use Existing System Properties
	Administer App Agent for Java FAQ
	Configure App Agent for Java for JVMs that are Dynamically Identified
	Add the Agent into an Embedded JVM

