APPDYNAMICS

AppDynamics for Node.js Beta

AppDynamics Pro Documentation
Version 3.8.x

Copyright © AppDynamics 2012-2014

1. AppDynamics for Node.js Beta e 3

1.1 Requirements for Node.jsBeta 3
1.2 AppDynamics for Node.js Architecture 3
1.3 Supported Environments and Versions for Node.js 4
1.4 Install the App AgentforNode.js 5
1.5 Uninstall the App Agentfor Node.js 8
1.6 Configure AppDynamics for Node.js 8
1.6.1 Configure Transaction Detection for Node.js 8
1.6.2 Configure Error Detection for Node.jst 12
1.7 Monitor Node.js Applications 13
1.7.1 Monitor Node.js Business Transactionsc.uuiiiunnnnnnnn.. 14
1.7.2 Monitor NOGE.JS PrOCESSES . .o i ittt ittt ettt et 14
1.7.3 Monitor Node.jsBackends i 19
1.8 Troubleshoot Node.Js Application Problems 20
1.8.1 Troubleshoot Slow Response Times for Node.js 20

Copyright © AppDynamics 2012-2014 Page 2

APPDYNAMICS

AppDynamics for Node.js Beta

This information covers using and configuring the Agent for Node.js.

For general information about AppDynamics see AppDynamics Essentials and AppDynamics
Features.

Monitor Node.js
Applications

Troubleshoot Node.js Application Problems

Install AppDynamics for
Node.js

Configure AppDynamics
for Node.js

Supported Environments
and Versions for Node.js

Requirements for Node.js Beta

The Node.js agent requires a 3.8 AppDynamics on-premise Controller. See Controller System
Requirements for information on sizing your Controller.

You can download the controller from the AppDynamics download site.

A license file is required. Contact the Node.js beta manager at omed@appdynamics.com about
obtaining a license and accessing the agent download site.

AppDynamics for Node.js Architecture

The AppDynamics agent for Node.js instruments a single Node.js process. Instrumentation
enables the agent to discover, map and track metrics for business transactions, application
services, and backends in your Node.js application. Typically there is a one-to-one
correspondence between a process and a Node.js application but sometimes an application
consists of multiple processes.

This agent communicates with a Java proxy dameon that handles the communication between the
Node.js agent and the AppDynamics Controller. The proxy reports the performance metrics to the
Controller, where the data is stored, baselined, and analyzed. You can access this performance
data interactively using the Browser Ul or programmatically using the AppDynamics REST API.

Copyright © AppDynamics 2012-2014 Page 3

http://docs.appdynamics.com/display/PRO14S/AppDynamics+Essentials
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Features
http://docs.appdynamics.com/display/PRO14S/AppDynamics+Features
http://docs.appdynamics.com/display/PRO14S/Controller+System+Requirements
http://docs.appdynamics.com/display/PRO14S/Controller+System+Requirements
http://download.appdynamics.com/browse/zone/3/

APPDYNAMICS

The proxy component is automatically started when you start the Node.js app agent.

Java daemon process
responsible for controller
communication

Browser Ul
‘e

. o
Node.js agent AppDynamics —
responsible for AppDynamics Agent — Controller .8
instrumentation of Node js Agent
Node.js code S5a3aS/0n-Premise J_

Traffic e —

Node.js Application

Supported Environments and Versions for Node.js

® Supported Platform Matrix for the App Agent for Node.js
Node.js Versions

Operating Systems

Transaction Naming

HTTP Exit Points

Database Exit Points

Cache Exit Points

Supported Platform Matrix for the App Agent for Node.js

Node.js Versions
Supported Node.js Versions
0.8 +

Operating Systems

Supported Operating System
Linux 32-bit

Linux 64-bit

Mac OSX v10.9.2

Copyright © AppDynamics 2012-2014 Page 4

APPDYNAMICS

Transaction Naming

Entry Type Default Transaction Naming

Node.js Web URI

HTTP Exit Points

Supported HTTP Exit Points
Node.js HTTP client library

See http://nodejs.org/api/http.html for information about the Node.js HTTP client library.

Database Exit Points

Supported Database Exit Points
MongoDB

MySQL

PGSQL

Riak

Cache Exit Points

Supported Cache Exit Points
Memcached

Redis

Install the App Agent for Node.js

® Prerequisites for Agent Installation
® Instrumenting Node.js Applications
¢ |nstalling the Agent
® Modifying the Application Code
®* Logs
®* Node.js Agent Log
® Proxy Log
® |nstalling the Machine Agent on an Node.js Node

Prerequisites for Agent Installation

1. Download the tarball file for the App Agent for Node.js from the AppDynamics beta download
zone.

If you do not have access to the beta zone, please request it from your account manager and/or
email the Node.js Product Manager: omed@appdynamics.com.

Copyright © AppDynamics 2012-2014 Page 5

http://nodejs.org/api/http.html
http://download.appdynamics.com/browse/zone/82/
http://download.appdynamics.com/browse/zone/82/

APPDYNAMICS

2. Be prepared to provide the following information:

¢ controller host and controller port: These are the host name or IP address and the port
number of the AppDynamics controller that the agent connects to. On-premise customers
establish these settings when they install the controller.

® AppDynamics application name: This is the name that you assign to the business
application you will monitor with the App Agent for Node.js.

® AppDynamics tier name: This is the name that you assign to the tier you will monitor with the
App Agent for Node.js.

® AppDynamics node name: This is the prefix to the dynamically-generated node name of the
server that you will monitor with the App Agent for Node.js. On startup the agent assigns an
index based on the startup of the node processes and appends this index to this prefix
specified to create the node name that is displayed in the AppDynamics console.

3. You need permission to perform a package installation and to edit the application source code
to complete the installation.

Instrumenting Node.js Applications

There are two steps to instrument your Node.js applications:

® Installing the Agent
® Modifying the Application Code

Installing the Agent

From the root directory of the Node.js application run the command:

npminstall <nodejs_tarball _file>

Modifying the Application Code

For every Node.js application that you are instrumenting, insert the following call in the application
source code at the first line the main module (such as the server.js file), before any other require
statements.

Copyright © AppDynamics 2012-2014 Page 6

APPDYNAMICS

require("appdynam cs").profile({

control | erHost Nane: ' <controller host nane>',

controllerPort: <controller port nunber>, // If SSL, be sure to
enabl e the next line

control |l erSsl Enabl ed: true|false, // Optional - use if connecting
to controller via SSL

account Nane: ' <AppDynani cs account nane>', // Required for a
controller running in nulti-tenant node.

account AccessKey: ' <AppDynani cs account key>', // Required for a
controller running in nulti-tenant node.

appl i cati onNanme: ' <app_name>',

tierName: '<tier_nanme>',

nodeNane: '<node_name>', // Prefix to the full node namne.

debug: true|false // Optional - defaults to false

1)

Logs

There is an agent log and a proxy log for each application.

Node.js Agent Log

If the agent is running in debug mode, the agent component logs to stdout/stderr. This log contains
the transactions that the agent processes and sends to the proxy. This log is available in the same
location to which stdout/stderr streams are directed from the monitored application.

If debug mode is not enabled, no agent log is generated.

You set debug mode is in the require statement that instruments your Node.js application. See Mo
difying the Application Code.

Proxy Log

The proxy logs the transactions that it accepts from the agent and sends to the Controller. The
proxy generates logs whether or not the agent is running in debug mode.

When the agent component launches the proxy, it displays in the agent log the directory path to
which the proxy is logging.

Installing the Machine Agent on an Node.js Node

If you install the Machine Agent on the machine hosting the instrumented Node.js hode and you
specify the tier and node name in the machine agent's controller-info.xml file, the App Agent for
Node.js will fail to register.

To avoid this problem:

Copyright © AppDynamics 2012-2014 Page 7

APPDYNAMICS

* |Install the App Agent for Node.js before you install the Machine Agent
® Do not specify the tier and node in the machine agent controller-info.xml, where it is
optional. The machine agent will pick up the tier and node from the app agent configuration.

Uninstall the App Agent for Node.js

To uninstall the App Agent for Node.js

1. From the application root directory of the application from which you want to uninstall the
agent enter:

npm uni nstal | appdynanmi cs

2. Remove the "require("appdynamics")" statement from your Node.js applications.

Configure AppDynamics for Node.js
Configure Transaction Detection for Node.|s

® Accessing Transaction Detection
® To Access Business Transaction Detection Configuration
Node.js Web Entry Point
Business Transaction Naming and ldentification
® Dynamic Transaction Naming Based on the Request
® Optimize Business Transaction Detection
® To exclude business transactions
® To reverse business transaction exclusion
® |earn More

Accessing Transaction Detection

To Access Business Transaction Detection Configuration

1. From the left navigation pane select Configure -> Instrumentation.
2. Click the Transaction Detection tab if it is not already selected.

3. Click the Node.js - Transaction Detection tab.

4. Do one of the following:

® To configure transaction detection at the application level, in the left panel select the
application.
If you select the application, you can optionally click the button to configure all tiers to use
the application-level configuration.

® To configure transaction detection at the tier level, in the left panel select the tier for which
you want to configure transaction detection.
You can choose the button to apply the application configuration to the selected tier or the
button to create a custom configuration just for this tier.

Node.js Web Entry Point

Copyright © AppDynamics 2012-2014 Page 8

APPDYNAMICS

The entry point is where the business transaction begins. Typically an entry point is a method or
operation or a URI.

To enable transaction monitoring check the Transaction Monitoring check box. You can disable
monitoring at any time by clearing this check box.

For Node.js Web entry points to be automatically detected, check the Automatic Transaction
Detection check box.

Java - Transaction Detection .NET - Transaction Detection PHP - Transaction Detection Node.J5 - Transaction Detection

Copy Configure all Tiers to use this Configuration

+ Entry Points

Type Transaction Automatic Transaction Detection
IWanitoring
. Weh " Enablad " Discover Transactions automatically for all web requests Configure Naming

Business Transaction Naming and Identification

The default convention for Node.js Web transactions is to use first two segments of the URI of the
application to name the transaction. Click Configure Naming if you want to change the naming
convention to the full URI or to use different segments of the URI to give the business transactions
more meaningful names.

Node.JS Web Transaction Naming Configuration

What part of the URI should be used in the Transaction Mame?
Use the full URI

@ Usea part of the URI (for example, if you have dynamic URIs)

z segments of the URI in Transaction Mames

Use the first

If the first two segments of all your transactions are similar, you might want to base the business
transaction names on a different part of the URI:

Node.JS Web Transaction Naming Configuration

What part of the URI should be used in the Transaction Name?
Use the full URI

@ WUsea part of the URI ifor example, if you have dynamic URIs)

Use the last 3 segments of the URI in Transaction Names

Mame Transactions d

Dynamic Transaction Naming Based on the Request

Copyright © AppDynamics 2012-2014 Page 9

APPDYNAMICS

You can also configure dynamic transaction naming based on the details of the user request.

For example:

If the web context is http://fexample.com/store/checkout, the naming strategy would use the
default first two segments to name these transactions as /store/checkout.

If the web context is http://example.com/store/secure/internal/updateinventory, the naming
strategy would use last two segments to name these requests as /internal/updateinventory.

If the web context is http://wines.com/store/orders.special, the naming strategy would use the
combination of the parameter value for "type" and the last two segments to name such requests
as /orders/process.special. Similarly, depending on the web could, you can use the cookie,
header, request method or any combinations of URI segments to configure useful business
transaction names.

What part of the URI should be used in the Transaction Mame?
Use the full URI
@ Usea part of the URI (for example, if you have dynamic URIs)

Use the last 2 segments of the URI in Transaction Names VWhat does this do?

" Mame Transactions dynamically using part of the request

Use URI segment(s) in Transaction names

Segment Mumbers Enter a comma separated list of parameter numbers (e.g. 1,3,4)

@ Use a parameter value in Transaction names

Faramater Name | type

Use a header value in Transaction names

Header Mame

Use a cookie value in Transaction names

Cookie Mame

Use the request method (GET/POST/PUT) in Transaction names

Optimize Business Transaction Detection

The agent detects all requests to an instrumented Node.js server as business transactions,
including requests for static content such as images, CSS files, JavaScript files, and static HTML
pages.

For this reason you may see business transactions automatically generated for static content in
the business transaction list. You probably want to prevent these types of transactions from being
detected, especially since there are default limits of 50 business transactions per agent and 200
per business application. After one of these limits is reached, all the excess traffic to the server is
collected into a single business transaction called All Other Traffic. See All Other Traffic Business
Transaction for more information about this. If necessary you can increase the business
transaction limit by setting the the max-business-transactions property in
<nodejs-agent-root>/proxy/conf/app-agent-config.xml.

Copyright © AppDynamics 2012-2014 Page 10

http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction
http://docs.appdynamics.com/display/PRO14S/All+Other+Traffic+Business+Transaction

APPDYNAMICS

View Dashboard More Actions View Options Configurs

Mame Health Response

Time [ms)
. fjsiviews 1
@ 1

|

.. /ess/bootstrap.css o
. Jess/bootstrap-responsive css 1
i BB A0 Other Traffic - wine_cellar_tier 1

¢ . Jitvunderscore-min.js tll Other Traffic - wine_cellar_tier
. fjsfmodels 1
B ibiboctstrap.min.js 0
| @ ibibackbone-minjs . o

You can exclude unimportant business transactions in the business transactions list to stay under
the limit.

To exclude business transactions

1. In the left navigation pane, click Business Transactions.

2. In the business transactions list, select the transaction(s) that you want to remove.
3. Click More Actions.

4. In the menu click Exclude Transactions.

View Dashboard More Actions View Options Configure

Name Monitor Configure

Wiew Metrics by Individual Modes Configure Thresholds

fisiviews Configure Data Collectors

Troubleshoot
i o Rename
View Health Rule Violations
fcsslstyles.))] Delete
Start Diagnostic Session :
Exclude Transactions

fib/boctstra ﬁvt
View Excluded Transastions
. Analyze
fis/models
Analyze Response Time vs Load Set as Background Task
fibfundersc

Create Group
libvbackbor ~ Report
Export Grid Data

fis/main.js
-

5. In the Exclude Business Transactions screen click Exclude Business Transactions.

To reverse business transaction exclusion

1. In the business transactions list, click More Actions.
2. In the menu click View Excluded Transactions.
3. In the Excluded Business Transactions window, do one of the following:

Copyright © AppDynamics 2012-2014 Page 11

APPDYNAMICS

® To unexclude all the excluded transactions, click Unexclude All.
® To unexclude some of the excluded transactions, select the transaction(s) and click U
nexclude Selected.

After a business transaction has been unexcluded, the agent starts monitoring it again and it is
counted toward the business transaction limit.

Learn More

® Business Transaction Monitoring
Configure Error Detection for Node.js

® Accessing Error Detection Configuration for the Node.js Agent
® To Access Error Detection Configuration

® Ignoring Exceptions
® To configure the Node.js agent to ignore an exception

You can configure which exceptions and log messages the agent should ignore when reporting
errors. Ignored errors are not be included in the business transaction error count.

These configurations help you reduce the number of errors that the agent reports so you see just
those that are most interested for monitoring and troubleshooting.

Accessing Error Detection Configuration for the Node.js Agent

To Access Error Detection Configuration

1. From the left navigation pane select Configure -> Instrumentation.
2. Click the Error Detection tab.
3. Click the Node.js - Error Detection tab.

Instrumentation <\°
Transaction Detection Backend Detection End User Experience >
Java - Error Detection .NET - Error Detection PHP - Error Detection Node.J§ - Error Detection

Save Error Configuration

M Error Detection Using Logged Exceptions or Messages

» Define exceptions or log messages to ignore when detecting error Transactions

Ignored Exceptions

lgnore these exceptions when detecting errors

Add Mew Exception to Ignore

Copyright © AppDynamics 2012-2014 Page 12

http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Monitoring

APPDYNAMICS

Ignoring Exceptions
Exceptions that are ignored are listed in the Ignored Exceptions list.
To configure the Node.js agent to ignore an exception
Click Add New Exceptions to Ignore under the Ignored Exceptions list.
1. Enter the fully-qualified class names of exceptions to ignore, separated by colons.

Configure an Exception to Ignore when Detecting Emors x

Exception, or Exception Chain

Enter fully qualified Class Mames for Exceptions separated by :

Match Condition for Exception Message

This condition will be used to match against exception.getMessagel). If it matches, for the
exception configured above, the exception will not be detected as an Ermor

Exception Message Equals - &,

Cancel Save

Exception chains are supported. If you specify "A:B" as the exception chain, the agent
matches any chain where B is in the chain of A, even if B is not an immediate cause of the

exception.

2. Optionally, further qualify the exceptions to ignore by configuring a match condition for the
exception message. Enter the string to match and the qualifier from the dropdown list
(Equals, Contains, Starts with, Ends with, Matches Reg Ex). Click the gear icon to configure
the NOT condition for the match.

3. Click Save.
4. Click Save Error Configuration in the top left corner of the window.

You can later edit or remove the ignored exception from the list by selecting it in the Ignored
Exceptions list and clicking the Edit or Delete icon.

Monitor Node.js Applications

A node in the AppDynamics model is a single Node.js process instrumented by an AppDynamics
app agent.

The node dashboard for Node.js is like the node dashboards for the other app agent except:

® |tincludes a Process Snhapshots tab for accessing the process snapshots for the node.

Copyright © AppDynamics 2012-2014 Page 13

APPDYNAMICS

® |t does not include a Memory tab for monitoring memory usage.
See Node Dashboard for general information about node dashboards.

The tier dashboard for Node.js is similar to the tier dashboards for the other app agents except
that it includes a tab for accessing the process snapshots for the nodes contained by the tier.

See Tier Dashboard for general information about tier dashboards.
See Monitor Node.js Processes for information about process snapshots.

Monitor Node.js Business Transactions

See Business Transaction Monitoring and Transaction Snapshots for general information about
monitoring business transactions.

The beta App Agent for Node.js does not support:

call graphs and hotspots in transaction snapshots

data collectors

distributed transactions

correlation with end user monitoring (web and mobile) snapshots

This is a transaction snapshot captured by the App Agent for Node.js:

SUMMARY User Experience SLOW
SOL CALLS Execution Time 444 ms
Transaction Timestamp 032514 10:01:36 AM (server) 03/25/14 10:01:38 AM (agent)
ERRCOR DETAILS
Summary Request was slower than the average by one of the thresholds below -
HARDWARE / MEM Tier (8 Tier_0
NODE PROBLEMS Mods [Mode
Business Transaction [S/1
ADDITIONAL DATA .
URL M
SERV c
SERVICE ENDPOINTE SessionID (not found)
User Principal (not found)
Process D 31588

Thread Mame AD Thread Pool-ProxyAsynchsg2
Thri

1D 25

Transaction Thresholds Slow: 327 ms. Average response time [127.3] (minimum baseline: 200 ms) over last 22 minutes. Standard deviation unavailable in first 30 minutes.

Very 727 ms. Average response time [127.2] (minimum baseline: 600 ms) over last 22 minutes. Standard deviation unavailable in first 30 minutes.
Configure

Request GUID 083f837d-08e8-4d1a-8678-cbec3fiafled 15
Link

To view call graphs that reveal bottlenecks in your Node.js processes, use process snapshots.
Monitor Node.js Processes

® Set Up Process Snapshot Collection
® Process Snapshots List
® To filter the process snapshots list
® More Actions Menu
® View Process Snapshots

One reason for slow load times is inefficient code that uses a lot of CPU time. In a single-threaded
model, such as Node.js, one slow process forces other processes to wait.

You can monitor Node.js processes using lists of process snapshots to identify which processes
have high CPU times. From the list you can select and examine process snapshots of slow
processes to identify exactly which functions in your code are blocking the CPU.

Copyright © AppDynamics 2012-2014 Page 14

http://docs.appdynamics.com/display/PRO14S/Node+Dashboard
http://docs.appdynamics.com/display/PRO14S/Tier+Dashboard
http://docs.appdynamics.com/display/PRO14S/Business+Transaction+Monitoring
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

APPDYNAMICS

A process snapshot describes an instance of a CPU process on an instrumented node.js node. It
generates a process-wide call graph for a CPU process over a configurable time range. Process
snapshots are independent of any running business transactions. Process snapshots persist for 14
days, unless you archive them in which case they are available forever.

You can monitor process snapshots at the tier level or the node level.

Set Up Process Snapshot Collection

1. Navigate to the dashboard for the tier or node for which you want to collect process
snhapshots.

2. Click the Process Snapshots tab.

3. Click Collect Process Snapshots.

4. If you are in the tier dashboard, select the node for which you want to collect snapshots from
the Node dropdown list. If you are in the node dashboard, you can only set up snapshot
collection for that node.

Collect Process Snapshot

Collect a Process Snapshot

A Process Snapshot will generate a process-wide call graph by profiling the CRU
process during the range of time indicated below. Select the amount of time you
wish to profile this process (node) and click on "Start’.

Tier Tierl

Mode Noded v

Duration {seconds)

Cancel Start

5. Enter how many seconds you want to collect process snapshots for this node. The
maximum is 60 seconds.
6. Click Start.

The agent collects process shapshots for the configured duration.

Process Snapshots List

To access the process snapshots list:

1. Navigate to the dashboard for the tier or node for which you want to view process
shapshots.
2. Click the Process Snapshots tab.

For each process snapshot the list displays the time the process started, the process's execution
time in milliseconds, and the tier and node in which the process executed.

Click the Exe Time column and then toggle the direction to sort the snapshots in descending order
by execution time. The processes with the slowest CPU times will be at the top of the list. These
are the snapshots you will want to examine.

Copyright © AppDynamics 2012-2014 Page 15

APPDYNAMICS

Time Exe Time (¥ Summary Tier Mode

= 02014 22052 PM &0000 k Triggered by snapshot request at:Thu Mar 20 14:28: Tier_0 Mode1

= 02014 32457 PM &0000 Triggered by snapshot request atThu Mar 20 15:23 Tier_0 Mode1
= 032014 411358 PM &0000 Triggared by snapshot request at Thu Mar 20 16:12: Tier_0 Mode1
= 032014 1:31:05 AM 24000 Triggered by snapshot request at: 1385304214440 Tiar_0 Mode1
= 032014 34232 PM 15000 Triggared by snapshot request at: Thu Mar 20 15:38 Tier_0 Mode1
= 0320/14 34211 PM 14000 Triggared by snapshot request at: Thu Mar 20 15:37 Tier_0 Mode1
"l = 0320014 1:28:54 AM 13000 Triggered by snapshot request at: 1305304076677 Tier_0 Mode
= 0320014 3:41:20 PM 12000 Triggared by snapshot request at Thu Mar 20 15:37 Tier_0 Mode
= 0320014 3:41:08 PM 11000 Triggared by snapshot request at Thu Mar 20 15:37 Tier_0 Mode
= 0320014 33627 PM 10000 Triggared by snapshot request at Thu Mar 20 15:34 Tier_0 Mode
= 0320/14 33616 PM G000 Triggered by snapshot request at Thu Mar 20 15:34 Tier_0 Mode
= 0320/14 3:36:05 PM 2000 Triggered by snapshot request atThu Mar 20 15:34 Tier 0 Mode

(20014 1:26:41 P 700 Tri by 5na : Wl j Mode

To filter the process snapshots list

You can filter the process snapshot list to display only the snapshots that you are interested in.
You can filter by execution time, whether the snapshot is archived, and the GUID of the request. If
you access the list from the tier dashboard, you can also filter by node.

Copyright © AppDynamics 2012-2014 Page 16

APPDYNAMICS

Hide Filters Collect Process Snapshot Miore

w Execution Time

ms
» Nodes

' Moda1

w Archived

Return Only Archived Snapshots

w Advanced

Request GUID's

Clear Criteria Search

More Actions Menu

Use the More Actions menu to select one or more process snapshots in the list and perform the
following actions on them.

® Archive Use this option to archive the selected process snhapshots. Normally snapshots are
purged after two weeks. You can archive a snapshot beyond the normal snapshot lifespan

to retain it for future analysis. You can view archived snapshots by checking the Archived
filter in the Filters panel.

® Delete items Use this option to remove the snapshot from the list.

® Copy a Link to this Snapshot to the clipboard Use this option to send a link to the
snapshot to someone.

®* Export Grid Data Use this option to export the snapshot data to a file.

View Process Snapshots

From the process snhapshots list, double-click the process snapshot that you want to view.

A process snapshot contain the following tabs:

* SUMMARY: Displays the execution time of the process, timestamp of the snapshot, CPU
time used, tier and node the process ran on, GUID of the request, etc..

Copyright © AppDynamics 2012-2014 Page 17

APPDYNAMICS

You can click the link icon to copy a link of the snapshot URL.

Process Snapshot Drill Down. Exe Time: 10000 ms Timestamp: 03/25/14 9:43:16 AM GUID: f80aaSeX

SUMMARY Execution Time 10000 ms
CALL GRAPH CPU Time 0 ms (0 %)
Time 03/25/14 94318 AM (server) 03/25/14 9:43:16 AM (agent)
HOT SPOTS .
Summary Triggered by snapshot request at:Tue Mar 25 09:42:51 PDT 2014
ADDITIONAL DATA Tier ‘ Tier_0
Hode [Modet
Process ID 31588
Request GUID fB0aa563-55a2-4aa7-a7ck-c4161BbEfEdS
Link %
Close

® CALL GRAPH: Shows the execution time of methods on the process's call stack.
In the Time column you can identify which calls take the longest time to execute.

Process Snapshot Drill Down. Exe Time: 10000 ms Timestamp: 03/28/14 9:32:03 AM GUID: c1686944-a61c-439e-acdd-02X

SUMMARY Execution Time: 10000 ms. Mode Nodel. Timestamp: 03/28/14 9:32:03 AM.
CALL GRAPH Set as Root Reset Root | (7) Show Filters = ,O
HOT SPOTS Name ime (ms)
v . Wiritable:owrite - _stream_writable js: 160 0 ms (=elf) | o% ﬂ o~
ADDITIONAL DATA
» [socket:_write - netjs:E17 amstotal) | 0.1% i |
Y. (global):(anonymous function) - hitp js: 1722 4 ms (self) | o% ﬂ
. EventEmitter:emit - events.js:53 4 ms (zelf) | 0% ﬂ
Y. (global):onread - net.js:484 9 ms (zelf) | o1 ﬂ
v . Readable:push - _stream_readable js:116 0 ms (=elf) | 0% ﬂ
v . (global):readableAddChunk - _stream _readable.js:136 5 ms (=elf) | o1 ﬂ
Al . (global)::emitReadable - _stream_readable.js:382 4 ms (self) | 0% ﬂ
v . (global)::emitReadable_ - _stream_readable js:407 4 ms (=elf) | 0% ﬂ
Y. EventEmitter::emit - events.js:53 5 ms (=elf) | o1 ﬂ
A J . {global):{anonymous function) - _stream_readable js: 733 0 ms (self) | o% ﬂ
Y. EventEmitter::emit - events js:53 0 ms (self) | o% ﬂ
v . (global)::ianonymous function) - lik'Connection js:71 0 ms (=elf) | 0% ﬂ
b-. Protocol:write - protocol/Protocol js:36 8313 ms (total) [NEENE ﬂ
A/ . Readable:read - _stream_readable.js:252 0 ms (self) | 0% ﬂ
. (global)::howhMuchToRead - _stream_readable.js:214 4 ms (=elf) | 0% ﬂ
Y. (global)::maybeReadMoare - _stream_readable js:418 4 ms (=elf) | 0% ﬂ
. (global):apply - 4 ms (zelf) | 0% ﬂ
A . socket:ondata - hitp.js:1965 0 ms (self) | 0% ﬂ
‘!’. (global)::parserOnHeadersComplete - http js:68 0 ms (=elf) | 0% ﬂ
Y. parsar:onincoming - http.js:2020 0 ms (self) | 0% ﬂ
. - __ -m :L.Ez:un.l.::_; ,,,,, boinED N . o e . ™

Copyright © AppDynamics 2012-2014 Page 18

APPDYNAMICS

Click the to see more information about a call.
wirita: 36

Mame: Protocal wriite - prolocal'Prolocal, js
Typa: JS

Clags: Protocol

Method: write

Line Mumber: 36

Execution Time

=alt Tima: 10 me: 0.1 %
Total Time: 8313 ms 831 %
Exit Calls

Mo ex|l calls ware magde

Close

The total processing time displayed for the root element in the call graph includes the CPU
idle time.

Execution Time: 10000 ms. Mode Model. Timestamp: 03128114 9:32:03 AM.

Set as Root (7 Show Filters -
Mame Tima (ms)
» [(global):iroot) - 10000 ms {total) S

[N

® HOT SPOTS: Sorts the calls by execution time, with the most expensive calls at the top.
To see the invocation trace of a single call in the lower panel, select the call in the upper
panel.
Use the slider in the upper right corner to filter which calls to display as hot spots. For
example, the following setting filters out all calls faster than 496 ms from the hot spots list.

SUMMARY This screen displays all of the method calls in the call graph sorted Method Time (ms) o 496 992 15k 2.0k
by time donit filter by tims | : !
CALL GRAPH) [N
Mame Method Time (ms) External Calls Details
HOT SPOTS RowDataPacket::parse - packets/iRowDataPachket js:1 1984 ms (self) 19.B %
ADDITIONAL DATA Buffer:toString - buffer js:382 1835 ms (self) 184 %
Parser.wrile - protocol/Parser.js:22 1248 ms (self) [125%
RowDataPacket:_typeCast - packets/RowDataPacke TT0ms (seffy | T7%
(glebal):Date - s01msisefi 1 5%

Invacation Trace

{global {root):0 (237ms self ime, 10000 ms total tima)

{global onread:484 (9ms self time, 500 ms total time)
Readabl.push:116 (0ms self time, 8343 ms total time)
(global.readableAdd Chunk:136 (5ms self time, 8343 ms total time)

(global.emitReadable: 382 (4ms self time, 8330 ms total time)
(global.emitReadable_ 407 (4ms self time, 8326 ms total time)
EventEmitte.emit:53 (5ms self time, 8322 ms total time)
iglobal.(anonymous function):733 (Oms self time, 8317 ms total time)
EventEmitte.emit:53 (Oms self time, 8313 ms total time)

* ADDITIONAL DATA : Displays the unique id of the process.
Monitor Node.js Backends

A backend is an entity in the AppDynamics model that the app agent does not instrument directly,
but monitors traffic flows to it. The App Agent for Node.js monitors flows to database and cache
exit points. See Supported Environments and Versions for Node.js for the current list of supported
backends.

You cannot configure detection and naming for Node.js backends.

Copyright © AppDynamics 2012-2014 Page 19

APPDYNAMICS

For general information about monitoring backends see:

® Backend Monitoring
® Monitor Databases
® Monitor Remote Services

Troubleshoot Node.Js Application Problems

Troubleshoot Slow Response Times for Node.js

® Slow and Stalled Transactions

® To troubleshoot slow and stalled transactions
¢ High CPU Times

® To troubleshoot slow processes
® |[earn More

When you click Troubleshoot -> Slow Response Times, the Slow Response Times window
opens showing two tabs. You can drill down into transaction issues in the Slow Transactions tab a
nd into database or remote services issues in the Slowest DB & Remote Services tab.

Slow and Stalled Transactions
There are many reasons why a business transaction may be slow or stalled.

By default AppDynamics considers a slow transaction one that lasts longer than 3 times the
standard deviation for the last two hours and a very slow transaction 4 times the baseline for the
last two hours.

By default AppDynamics considers a transaction that lasts longer than 45 seconds (4500
milliseconds) to be stalled.

You can configure these thresholds to better match your environment. See Thresholds and Config
ure Thresholds.

To troubleshoot slow and stalled transactions

1. Click Troubleshoot -> Slow Response Times.

2. Click the Slow Transactions tab if it is not selected.
In the upper pane AppDynamics displays a graph of the slow, very slow, and stalled
transactions for the time period specified in the Time Range drop-down menu. Click the Plot
Load check box to see the load.

Copyright © AppDynamics 2012-2014 Page 20

http://docs.appdynamics.com/display/PRO14S/Backend+Monitoring
http://docs.appdynamics.com/display/PRO14S/Monitor+Databases
http://docs.appdynamics.com/display/PRO14S/Monitor+Remote+Services
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Times+for+PHP#TroubleshootSlowResponseTimesforPHP-SlowandStalledTransactions
http://docs.appdynamics.com/display/PRO14S/Troubleshoot+Slow+Response+Times+for+PHP#TroubleshootSlowResponseTimesforPHP-SlowDatabaseandRemoteServiceCalls
http://docs.appdynamics.com/display/PRO14S/Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds

APPDYNAMICS

In the lower pane AppDynamics displays the transaction snapshots for slow, very slow, and
stalled transactions.

Y

Slow Transactions

Slow Response Times last 4 hours

Slowest DB & Remote Service Calls

Slow Transaction Snapshots

03/25/14 1:00:31 PM

03/25/14 12:52:01 PM

Show Filters
Time
0 % 02/25/14 Z.01:0Z PM
0 % 03/25/14 2:00:0Z PM
% 03/25/14 1:54:32 PM
E 02/25/14 1:31:41 PM
0 % 03/25/14 1:22:51 PM
0 % 03/25/14 1:01:41 PM
B
B

5.

More Actions

Exe Time (ms) URL

1458 "
802 "
484 i
820 "
1175 "
3946 "
656 "
877 "
1089 "

B Load 1425 cale + Plot Load
[
Talisl
Uy Nomal I 7% 14
| Slow 1.0% 14
very Slow || 18% 25
! Stalls 1 00% 0
10:01 AM 10:18 AM 10:35 AM 10:52 AM 11:09 AM 11:26 AM 11:43 AM 12:00 PM 12:17 PM 12:34 PM 12:51 PM 1:0BPM 1:25PM 1:42 PM 1:55 PM
B

X o

Showing 29 snapshats

Configure
Business Transaction Tier Mode
" Tier_0 Modet
" Tier_0 Modet
" Tier_0 Modet
" Tier_0 Modet
" Tiar_0 Mode1
" Tier_0 Mode1
M Tier_0 Mode1
" Tier_0 Modet
" Tier_0 Modet

!! % 03/25/1412:45:41 P

3. Click the Exe Time column to sort the transactions from slowest to fastest.

4. To drill down, select a snapshot from the list and click View Transaction Snapshot. A
transaction snapshot shows the details of an instance of a business transaction. See Transa
ction Snapshots for information about drilling down into a snapshot.

Call Drill Down. Exe Time: 3231 ms Timestamp: 03/25/14 11:48:51 AM BT: /1 GUID: 637eaedf-12e9-411d-8251-9f0754878f1a20

SUMMARY

SOL CALLS

ERROR DETAILS

HARDWARE / MEM

NODE PROBLEMS

ADDITIONAL DATA

SERVICE ENDPOINTE

High CPU Times

User Experiznce
Execution Time
Transaction Timestamp
Summary

Tier

Node

Busingss Transaction
URL

Session D

User Principal
Process D

Thread Name

Thread ID

Transaction Threshaolds

Request GUID
Link

) vERY_SLOW

3231 ms

0325714 11:48:51 AM (server) 03/25/14 11:48:51 AM (agent)

Request was slower than the average by one of the thresholds below -
W Tier 0

B nodet

@

noo

-
(not found)

(not found)

31974

AD Thread Pool-ProxyAsynchdsg2

25

Slow: 458 ms. 3.0x of standard deviation [52.7 ms] for moving average [258.9 ms] (minimum baseline: 200 ms) for the last 82 minutes

Very Slow: 859 ms. 4.0x of standard deviation [52.7 ms] for moving average [258.8 ms] (minimum baseline: 600 ms) for the last 82 minutes.
Configure

637eaedf-12e9-411d-8251-8f07 548781220

%

Your user experience may be slow because of processes that consume a lot of CPU time blocking
other processes.

To troubleshoot slow processes

1. In the node dashboard click the Process Snapshots tab.
2. Click Collect Process Snapshots.

3.

Copyright © AppDynamics 2012-2014

In the Collect a Process Snhapshot window set the duration to between 1 and 60 seconds.

Page 21

http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots
http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots

APPDYNAMICS

4. Click Start.
In a few minutes you should see some process snapshots in the list.
5. Sort the list by toggling the Exe Time column in the process snapshots list so that the
snhapshots for the slowest processes are at the top of the list.
Double-click one of the slow process snapshots.
In the process shapshot, click the CALL GRAPH tab if it is not selected.
Examine the Time column in the call graph to identify which of the calls are slow.

Click the at the end of the row for the slow call to see details.

© N

Learn More

Monitor Node.js Business Transactions
Monitor Node.js Processes
Transaction Snapshots

Configure Thresholds

Copyright © AppDynamics 2012-2014 Page 22

http://docs.appdynamics.com/display/PRO14S/Transaction+Snapshots
http://docs.appdynamics.com/display/PRO14S/Configure+Thresholds

	AppDynamics for Node.js Beta
	Requirements for Node.js Beta
	AppDynamics for Node.js Architecture
	Supported Environments and Versions for Node.js
	Install the App Agent for Node.js
	Uninstall the App Agent for Node.js
	Configure AppDynamics for Node.js
	Configure Transaction Detection for Node.js
	Configure Error Detection for Node.js

	Monitor Node.js Applications
	Monitor Node.js Business Transactions
	Monitor Node.js Processes
	Monitor Node.js Backends

	Troubleshoot Node.Js Application Problems
	Troubleshoot Slow Response Times for Node.js

